基于TiO2表面氧空位和Ti3+构建异质结构光催化剂及其光催化性能的研究

来源 :汕头大学 | 被引量 : 0次 | 上传用户:play5
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
TiO2表面缺陷位不仅可以作为催化反应的活性位点,在异质结构光催化剂体系构建过程中也同样起到至关重要的作用。本文利用TiO2表面氧空位和Ti3+独特的物理化学性质,分别构建了贵金属(Ru、Rh、Pd)/TiO2和半导体(BiOI)/TiO2两种异质结构体系。
  在贵金属(Ru、Rh、Pd)/TiO2异质结构体系中,采用浸渍法,利用TiO2表面氧空位和Ti3+的还原性质,在TiO2表面沉积上尺寸均一的Ru、Rh、Pd纳米颗粒,复合催化剂性能的提升与贵金属的功函数相对应;采用光还原沉积法,利用TiO2表面缺陷位对光生电荷的捕获能力,在TiO2表面分别沉积上粒径尺寸不同的Ru/Rh/Pd纳米颗粒,大颗粒贵金属由于表面等离子体共振(SPR)效应,拓展光响应范围,小颗粒贵金属由于费米能级较低,扮演电子陷阱的角色,二者分工明确、协同作用,催化性能较浸渍法制得的催化剂得到明显提升。此外,还对双金属和三金属体系的贵金属/TiO2异质结构复合催化剂做了初步探究。
  在半导体(BiOI)/TiO2异质结构体系中,分别以TiO2纳米带、TiO2纳米片和TiO2微米球为基材与BiOI复合,发现只有TiO2纳米片与BiOI复合后形成了BiOI/Bi/TiO2三元异质结构,表面氧空位和Ti3+在构建三元异质结构的过程中起到了关键作用。通过XRD、TEM、EDX、XPS、NO-TPD、UV-vis、PL等表征手段证实TiO2{001}晶面上的表面氧空位和Ti3+造成Bi-O键断裂,形成的金属Bi落位在BiOI和TiO2之间;通过不同TiO2基材、不同BiOI负载量合成实验、光催化活性实验和自由基捕获实验,提出金属-介导多元异质结构(BiOI/Bi/TiO2)的形成机理和光催化作用机理。原位形成的金属Bi位于半导体接触界面处,促进了光生电子-空穴对的分离,同时通过调节半导体的氧化还原电位,提高了BiOI/Bi/TiO2的氧化还原能力。因此,在光降解RhB实验中,催化活性较原始BiOI、TiO2和BiOI/TiO2二元异质结构得到显著提升。
其他文献
本课题采用臭氧-生物沸石-GAC工艺对姚江微污染水源水进行处理研究,主要是去除姚江水中的氨氮和有机物。在水温较高的时候,经过二十多天的自然挂膜,沸石的表面可以形成比较成熟的富含硝酸菌和亚硝酸菌的生物膜,形成生物沸石。生物沸石可以通过生物的降解作用,和沸石一起协同去除水中的氨氮,并可以对沸石进行生物再生,降低沸石再生成本。通过逐渐增加进水中的臭氧投加量,可以实现臭氧对生物沸石的驯化。采用臭氧-生物沸
该文为一项省级科研课题的试验和研究的部分成果.通过12个抗压试件和26个抗剪试件的试验,测定了KP型烧结页岩粉煤灰多孔砖砌体的基本力学性能.通过6片KP型烧结页岩粉煤灰多孔砖墙片在低周反复荷载作用下的试验研究,分析了该种墙体的破坏特征有其变形性能、强度、刚度、延性和恢复力特性等抗震性能.在经典墙体抗剪理论的基础上,提出了这种墙体的抗剪承载力计算公式.其计算结果与试验结果吻合良好.最后,采用层剪切模
学位
本论文以FCC油浆脱固重组分(FCC-HC)为原料,采用直接热缩聚法、共碳化法、供氢改性法制备中间相沥青,考察了不同的工艺方法和工艺条件对中间相沥青结构和性质的影响,并通过偏光显微镜、元素分析、FT-IR、XRD等表征手段对中间相沥青进行分析,探讨中间相沥青的形成过程和作用机制。以FCC-HC为原料,直接热缩聚法制备中间相沥青,最佳的反应条件为反应温度440℃,反应时间10 h,压力2 MPa。在
学位
水性丙烯酸酯乳液由于其环境友好、低成本、优异的成膜性和易于结构调整而已广泛用于水性建筑涂料领域中。然而,普通水性丙烯酸酯在耐水性、耐化学性和耐热性方面仍存在缺点,不能满足建筑行业的需求。环氧树脂的结构决定了其优异的附着力、耐腐蚀性、热稳定性、机械强度以及较高的反应活性,使得其可用于对丙烯酸酯进行改性,以达到优势互补,并且环氧接枝改性保留了环氧基团的反应活性,在交联固化成膜时提高其交联密度,可使得涂
学位
本文主要分为WS2纳米片/石墨烯三维复合材料的制备并应用于超级电容器的正极材料和TiO2纳米膜涂覆于304不锈钢表面的腐蚀保护特性研究这两个独立的部分。  第一部分,本文所研究的超级电容器是作为新兴的、小型高储能的设备之一。我们以块状的直径为45um的鳞片石墨粉为原料,使用改性的Hummers法经过预氧化和强氧化过程使原料剥离为多缺陷、多孔道的三维氧化石墨;并通过绿色高温的还原法成功地去除在氧化过
电化学发光(Electrochemiluminescence,ECL)是通过电化学氧化还原反应引发的、简便、灵敏、强有力的分析检测技术。电化学发光因其低背景信号干扰、宽线性范围、高灵敏度、简单操作以及成本低等优点,受到越来越多科研工作者的广泛研究。本文研究合成了1种新型的具有优异ECL性能的纳米发光体,并基于金属有机框架材料(MOFs)构建了两个电化学发光免疫传感器,实现了对前列腺特异性抗原(PS
电化学发光(Electrochemiluminescence,ECL)分析技术由于其检测范围宽、灵敏度高、操作方便等优点,已经成为近几年较为热门的生物分析手段之一。本文利用氧化铟锡(ITO)导电玻璃作为生物免疫传感器基底,结合具有较大比表面积、高催化活性和高导电性的多功能金纳米花(Goldnanoflowers,AuNFs),设计了两种新型无酶ECL免疫传感策略,实现了对甲胎蛋白(AFP)、癌胚抗
由于储能机理的差异,双电层电容器和法拉第电容器各自都有优缺点,为了利用两者的优点,有效的办法是将二者结合起来做成混合电容器,以获得最好的电化学储能能力。本文先制备改性的PyS-RG,以改善石墨烯在水溶液中的分散性,接着通过高温水热法和热还原法制备出单元金属氧化物/石墨烯复合材料(NiO/RG和Co3O4/RG)。  为探究双元金属氧化物/石墨烯复合材料电化学性能,仍以改性的PyS-RG为原料,通过
学位
TiO2光催化降解有机污染物具有速度快,可持续分解中间产物,无二次污染等优势,是治理有机污染物的有效途径之一。由于纳米粉体在实际应用中难以回收利用,制约了其工业化进程。针对这一问题,本论文选用Nafion液作为封装材料,对TiO2基光催化剂实施封装。通过XRD、SEM、TEM、EDS、UV-vis等手段对合成材料的组成、形貌、结构和水接触角等进行表征分析,考察了光催化材料降解甲基橙的性能,探究纳米
乙烯和丙稀作为石油化工的重要产品,在精细化学品生产中起着举足轻重的作用。由于我国富煤、少油的能源结构,将“煤”取代“石油”生产高附加值的低碳烯烃已成为近年来研究的热点。由于SAPO-34分子筛具有良好的水热稳定性及优异的低碳烯烃择型选择性,已成为MTO/DTO工艺中应用最为广泛的催化剂。但是SAPO-34分子筛孔口小,反应过程中极易形成积炭,导致孔道发生堵塞,催化剂快速失活,降低了其使用寿命。针对
学位