论文部分内容阅读
农药是农业生产中为了提高农作物产量、防止病虫害发生而广泛使用的一类化学物质或生物制剂。近年来,农药的不合理使用对生态系统和公共卫生造成了极大危害。传统的农药残留检测方法如高效液相色谱、液相色谱-质谱联用、气相色谱-质谱联用等方法耗时、费力、设备昂贵、环境不友好,难以实现现场快速检测的目的。表面增强拉曼光谱(SERS)结合了拉曼光谱和纳米光学的技术特点,在食品安全、环境检测和生物传感等领域受到了广泛关注。本文以构建灵敏、均匀、稳定、柔性的SERS检测基底为出发点,以常用的金纳米粒子(AuNPs)材料为基础,构建了双金属耦合银包金纳米粒子(Au@AgNPs),探究了AuNPs和Au@AgNPs在油/水界面的自组装行为,考察了亚克力胶带和高分子聚合物膜稳定的柔性Au@Ag纳米阵列的SERS性能,通过时域有限差分法(FDTD)探讨了自组装贵金属纳米阵列的电场增强机理,以农业生产中四种常用的农药(苯醚甲环唑、噻菌灵、福美双和甲氰菊酯)为模式农药,研究了所构建的SERS基底对食品中农药残留的响应能力,为促进SERS技术在农药残留快速筛查中的应用提供参考。本文具体研究内容及结论如下:(1)壳层厚度可调控的Au@AgNPs的制备及其对葡萄中苯醚甲环唑的SERS响应研究。以32 nm的AuNPs为内核,通过种子生长法在AuNPs表面生长一定厚度的Ag纳米结构,以调控Au@AgNPs的光学特性和SERS性能。结果表明,当Ag壳厚度从0增加到9.5 nm时,Ag壳的表面等离子体共振(SPR)峰强度增大且发生红移,而Au核的SPR迅速衰减,Ag壳厚度为5.2 nm的Au@AgNPs粒径较为均一,且SERS增强效果优异;所合成的Au@AgNPs可对浓度0.2-10 ppm的苯醚甲环唑溶液进行定量分析,以698 cm-1和808 cm-1的拉曼峰建立的校正曲线的相关系数R2分别为0.979和0.987;结合Qu ECh ERS(Quick、Easy、Cheap、Effective、Rugged、Safe)样品前处理方法,对葡萄样品中的苯醚甲环唑进行SERS定量分析,该方法的检测限(LOD)低至64μg/kg,且整个分析过程在25 min内完成。(2)基于油/水界面自组装构建二维Au@Ag纳米点阵列SERS基底,及其对果汁中福美双和噻菌灵的检测性能研究。构建环己烷/水双相体系,以乙醇作为诱导剂,将水相中的Au@AgNPs诱导至油/水界面,形成一层金属膜,将其转移至硅片衬底表面,得到致密排列的自组装二维Au@Ag纳米点阵列SERS基底。结果表明,该阵列中Au@AgNPs之间的间隙小于3 nm,相邻纳米粒子间可形成强烈的SERS“热点”,基底增强因子为1.2×106,具有比Au@AgNPs胶体更优的SERS活性;此外,基底具有良好的均匀性和信号重现性,R6G位于612、1183和1363 cm-1处SERS强度的相对标准偏差(RSD)分别为8.51%,9.21%和9.68%,不同批次制备的基底间RSD为10.51%;以所得的二维Au@Ag纳米点阵列基底对水中、梨汁、苹果汁、橙汁中的福美双和噻菌灵进行检测,福美双的LOD分别为0.0011、0.0052、0.0130和0.0590 ppm,噻菌灵的LOD分别为0.051、0.100、0.180和0.680 ppm。(3)基于亚克力胶带和聚对苯二甲酸乙二醇酯(PET)离型膜稳定的柔性Au@Ag纳米阵列基底的构建,及其对果蔬表面福美双的SERS无损检测性能研究。利用胶带的柔韧性和胶黏性将硅片衬底表面的二维Au@Ag纳米点阵列转移至亚力克胶带表面,并在其表面附着一层PET离型膜,防止Au@Ag纳米阵列受到外界环境的影响。研究表明,亚克力胶带可有效维持Au@Ag纳米阵列紧密排列的结构,保持其优良的SERS灵敏性、均匀性和信号重现性,其优良的柔韧性使得基底经20%的拉伸形变处理3次后仍保持85%的SERS活性;PET膜可保护Au@Ag纳米阵列免受外部环境(空气、高温、超声)的影响,有效地提高了Au@Ag纳米阵列的稳定性;所得到的柔性SERS基底可直接对果蔬表面的农药残留进行检测,对苹果、番茄和黄瓜表面上的福美双的检出限为5 ng/cm2。(4)基于多层次高分子聚合物膜构建灵敏、均一、稳定、柔性的新型Au@Ag纳米阵列基底,及其对果汁中噻菌灵的SERS传感性能研究。以聚甲基丙烯酸甲酯(PMMA)甲苯溶液作为有机相,乙醇作为诱导剂,通过油/水界面自组装的方法形成固定于PMMA膜上Au@Ag纳米阵列。PMMA加入量对于Au@AgNPs的固定具有显著影响,当含量为2.6 mg/cm2,可获得具有致密纳米粒子排列的Au@Ag/PMMA膜基底;此外,荧光定量PCR用封膜(qPCR膜)和PET膜可维持基底的机械稳定性和储藏稳定性,所得的Au@Ag/PMMA/qPCR-PET膜SERS芯片增强因子为3.14×106,室温大气条件下储藏60天后仍保留90%以上的SERS增强性能;该SERS芯片对噻菌灵显示出优异的传感性能,对自来水和果汁中的噻菌灵的检测范围分别为0.05-10 ppm和0.1-10 ppm,对梨汁、橙汁和葡萄汁中噻菌灵的LOD可分别低至21、43、69 ppb。(5)基于正丁硫醇(1-BT)自组装单分子层功能化改变AuNPs阵列的表面化学性质,及其对甲氰菊酯的SERS检测性能研究。结果表明,油/水界面自组装AuNPs阵列在785 nm光源激发下表现出强烈的柠檬酸钠的SERS信号,通过浓度为1 m M的1-BT与AuNPs阵列表面的柠檬酸根进行配体交换,可显著降低AuNPs阵列表面残留的柠檬酸根的SERS背景信号;以1-BT位于892 cm-1的拉曼峰对光谱进行归一化后,1-BT/AuNPs阵列显示出良好的信号均匀性,799 cm-1和1096 cm-1处峰强度RSD值分别为4.28%和1.16%;未经修饰的AuNPs阵列难以直接检测出甲氰菊酯的拉曼信号,而1-BT/AuNPs阵列可通过1-BT与甲氰菊酯分子间的相互作用,将甲氰菊酯富集到基底表面,实现SERS检测,其定量检测范围为0.1-1000 ppm。(6)核壳纳米粒子阵列的FDTD数值仿真模型构建及电场增强机理研究。研究表明,相邻纳米粒子间隙大小显著影响电场的近场耦合效果,对于Au核粒径32 nm,Ag壳厚度5.2 nm的Au@AgNPs阵列,纳米粒子间隙由1 nm增强到10 nm时,则SERS电场增强因子下降约4个数量级;随着Ag壳厚度由0增加至9.5 nm,所形成的Au@Ag纳米阵列的电磁增强作用逐渐增加,相比于532 nm和785 nm的激发光源,采用633 nm的光源激发可产生更强的SERS电场增强因子;纳米粒子周围的环境也会影响电场增强效果,当纳米粒子间隙被PMMA包埋时,相邻纳米粒子的电场耦合作用被削弱,SERS电场增强因子减小。因此,合理的控制Ag壳厚度和PMMA的用量对于实现最优的Au@Ag/PMMA膜基底至关重要。