基于拓扑信息的无线传感网络边界与瓶颈检测

来源 :江南大学 | 被引量 : 0次 | 上传用户:loyovue0603
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无线传感器网络(Wireless Sensor Network,WSN)由大量成本低廉、可收集数据的传感器构成,在环境、健康监测和入侵检测等领域得到广泛应用。由于传感器部署的随机性会影响网络的整体性能,且优化的前提是要获取WSN的整体概况,本文研究的边界和瓶颈就是其中最重要的整体信息。根据中介中心性可衡量节点在节点对间的重要性的特点,发现WSN中不同节点对间的最短路径较少经过边界节点,即边界的中介中心性小于其他节点,据此本文首次提出使用中介中心性来解决WSN的边界与瓶颈问题。本文主要研究内容如下:(1)为了识别由大量平均度较好的传感器节点组成的无线传感器网络的边界,本文提出了一种仅依赖于节点的连接信息的算法。考虑到真实WSN中传感器节点数众多,精确求解每个点的中介中心性消耗的资源巨大,因此本文通过构造节点的若干跳邻域图来近似求解中介中心性的值,基于边界节点中介中心性小于其他节点的思想找出边界。该方法极大地减少了最短路径的遍历次数,仿真也验证了其可行性。(2)由于节点的中介中心性比较时仍需获取一次全局信息,对资源本就短缺的传感器来说能耗过大。为此,本文提出一种改进的仅依赖局部网络信息的分布式方法。通过试验发现:在比较节点的中介中心性时,比较范围由整体网络改为5跳邻域图即能识别出边界节点。此方法将全局问题转为局部求解,降低了传感器能耗。对候选边界中存在的误认节点,算法通过判断其邻节点中是否存在边界节点,最终进行筛除。仿真结果表明该算法具有良好的适用性,能为瓶颈识别提供前提条件。(3)为辨识出WSN的瓶颈节点,由形态学中膨胀腐蚀思想启发,本文基于边界检测方法基础上,进一步提出一种仅依赖节点间连接信息的分布式算法。算法在完成边界检测的基础上,以识别出的边界为初始点对整个网络进行不断腐蚀,再选取最后一次腐蚀的节点为初始点开始不断向外膨胀。不同区域交界处的节点即为所求瓶颈。本文提出的边界与瓶颈检测算法易于理解,且通过仿真对在不同目标部署区域、不同节点密度中的应用情况进行讨论,仿真验证了算法的可行性,为WSN其他优化方法提供有效信息。
其他文献
随着机动车日益增加,环境污染、交通拥堵、交通事故是当今乃至以后世界各国发展路上所需要面临的难题。作为解决此难题的重要方法之一,智能交通系统登上了历史的舞台。作为智能交通系统的重要研究内容,多自主车辆队列的优点在于可以有效降低油耗、提升乘客的乘坐体验、增加道路通行量等,这些优点让多自主车辆队列正逐渐成为控制领域及交通领域的研究热点。其目的是在保证安全的前提下,通过车载传感器、车与车通信以及控制算法让
民族服饰折射一个民族的文化,同时也是宝贵的文化遗产。满族的民族服饰文化极具民族色彩,有着很高的文化价值。对于这些传统工艺美术资源,如何能够挖掘其文化内涵并进行保护与传承,并在当代语境及社会背景下重新焕发出生命力,从而让更多人真正了解和喜爱优秀传统文化,是值得深入探究的课题。在本文的研究中以满族服饰的装饰语言作为研究中心,同时进行文献研读与实地调研,以其做为研究基础,灵活运用历史资料研究法、文献剖析
不平衡数据的分类问题一直是机器学习与数据挖掘的共同课题。在传统的学习过程中,分类器大多在不平衡比例接近1的数据集上进行分类研究。然而在实际应用中,数据集的不平衡比例往往较大,分类器为了降低判别损失率,在分类过程中就会偏向多数类样本,从而影响分类结果。随着研究的不断深入,许多针对不平衡数据的算法被提出,有效降低了数据不平衡性对分类器性能的影响。本文从数据层面的算法入手,对不平衡数据的分类问题进行研究
卷积神经网络(Convolutional Neural Network,CNN)在图像特征学习领域取得卓越的成就,已经成为解决图像分类、图像降噪、目标识别、图像分割以及其它充满挑战的计算机视觉任务的主流方法。从将网络层简单相连的逐层连接的网络结构,到支持跨层间连接结构的残差网络结构(Res Net),到密集连接的密集网络结构(Dense Net),再到Google Net宽度网络结构,网络结构已经
大数据时代的到来,涌现出大量蕴含丰富语义信息的非结构化文本数据。为了应对海量数据的挑战,关系提取与知识图谱成为自然语言处理领域的重要研究话题。通过关系提取辅助知识图谱的构建,从而实现海量数据的重构,具有重要的现实意义。本文针对关系提取网络中存在的不足,进行了相关研究工作。第一,由于句子结构复杂多样,现有的关系提取网络抽取句子特征的能力明显不足,因此,在特征抽取阶段如何充分学习句子中潜在的关系特征是
随着电子商务的快速发展,为了降低成本,商家将物流业务转交给第三方物流(3PL)公司进行服务。然而随着物流市场的不断拓展,3PL逐渐展现出局限性,存在服务项目单一、信息化程度不高、企业间缺乏合作等问题,难以实现社会资源的优化配置。针对这些不足,第四方物流(4PL)应运而生,它通过整合3PL物流资源,进而满足了复杂的实际运输需求。4PL是一种崭新的物流运作模式,如何利用4PL的资源整合能力降低成本、碳
随着科技的不断发展,各种以生物特征为基础的身份鉴别技术已经逐步民用化、商业化,指纹解锁、虹膜打卡和人脸支付等新型身份认证技术已与人们的生活息息相关。人脸识别技术凭借其无接触、生物特征明显和容易获取等优势而成为当前主流的生物特征识别方法,带来了巨大的社会效益和经济效益,但是另一方面,人脸识别系统遭到攻击的案例也让其安全问题受到重视。在人脸识别系统中,攻击者可以通过伪造用户的面部信息进行攻击,比如通过
在现代工业生产中,随着传感器、PLC和DCS系统的普及与应用,数据和数据处理技术逐渐受到重视。基于数据驱动的多元统计过程监控方法能够在线评估过程运行状态,保障系统的可靠性和稳定性,对提高产品产量和质量具有重大意义。然而实际过程中大量存在的异常值和缺失数据现象,给基于数据驱动模型的过程监控带来挑战。论文研究基于改进潜结构投影(Modified Projection to Latent Structu
在传统系统辨识和状态估计方法的研究中,噪声经常被假设满足一定的概率分布条件,但是随着被研究系统的复杂度越来越高,满足概率分布的噪声往往难以获取,这时假设噪声在一定区间内更能满足实际生产需求.为了减少计算量,加快参数可行集收缩速率,提高参数辨识效率,本文以凸空间结构收缩分析为基础,研究了基于凸空间结构参数可行集滤波的系统参数辨识和状态估计研究算法,这对丰富和发展参数的集员滤波方法具有前瞻的理论意义和
在体验经济时代下,博物馆正从单一的文化收藏展示机构转型为文化交流、社会教育、展览娱乐等功能为一体的综合性场所,并不断丰富人们的精神文化生活。随着移动互联网的深入发展,以智能手机为载体的移动导览系统正成为博物馆文化信息传播的主流媒介,扮演着辅助观众寻求个性化游览体验的智能助手角色。但是,目前多数博物馆移动端导览系统常关注新媒体技术的应用而忽视了用户情感需求的满足,导致在人性化功能和情感化体验建设方面