论文部分内容阅读
在化石能源日渐匮乏、能源形势日益紧张的今天,人类寻找替代或辅助能源并提高能源利用效率的要求显得愈加迫切。我国是一个农业大国,有丰富的农业生物质资源,生物质能源以其数量巨大,可再生、再转换、可运输、可储存的特点,是目前最具有发展前景的可再生新能源之一。生物质成型燃料是以农林剩余物为原料,挤压成型后的形成的一种洁净低碳的生物质可再生能源,由于能量密度高、燃烧特性好、燃烧后对环境危害小等优势而被广泛关注。我国在70年代末引进挤压型生物质成型机,早期技术发展和产品研究较为缓慢。到20世纪未,随着国际油价的高涨以及我国能源需要的急剧攀升,生物质能源得到飞速发展。近年来随着国家不继制订和出台拉动生物质成型燃料发展的政策,生物质成型燃料产业也在不断发展壮大。但生物质成型燃料在发展过程中也遇到一些瓶颈和障碍,由于生物质秸秆内含有较高的Si、Ca、Cl、K、Mg等矿质元素,以及在秸秆收集过程中带入的许多泥沙(SiO2),造成了在生物质挤压成型过程中对生物质成型设备的快速磨损,致使目前生产成型设备平均使用修复周期不超过300h,个别生产厂家采用45号钢不做任何热处理,其使用时间甚至不超过50h。生物质成型设备的快速磨损问题已成为制约其发展的一个瓶颈。围绕上述问题,本文主要做了如下研究和工作:1.对生物质成型设备的磨损机理进行了理论分析和研究;2.在理论分析的基础上,对活塞冲压式和平模式生物质成型设备进行了模块化设计;3.对适用于生物质成型设备上的耐磨材料进行了选择分析与研究;4.将耐磨材料应用于模块化设计的生物质成型设备,并进行了试验研究。通过上述研究与实验,取得如下研究成果:1.通过对生物质成型设备的磨损及受力分析可知,生物质成型设备的磨损主要属于磨料磨损,受微观切削机理控制。通过设备运行参数的改变,可以有效减小磨损。对于螺旋挤压式成型设备,减小螺旋杆的旋转速度能有效地减少磨损,对于模压式成型设备,同样也可以有效地减少磨损。2.对成型设备模块化设计,是解决磨损问题的重要方法之一。将成型机分做若干个功能化模块,对于易损部件模块采用统一标准,可以极大地提高成型设备的可维护性,延长整体设备的生产使用寿命。3.非金属材料应用是解决磨损问题的重要选择,陶瓷材料是以离子键、共价键为主的结合键,使得其具有高熔点、高硬度、低摩擦系数等许多有利于防止磨损的性能。4.通过陶瓷耐磨材料在生物质成型设备上的应用实验,证明氧化铝陶瓷耐磨材料在生物质成型设备上的应用是成功的。尽管氧化铝陶瓷管在生物质成型过程中,出现了裂纹和部分碎裂现象,但并没有破坏其自身完整性以及成型效果,用氧化铝陶瓷作为生物质成型设备的主要磨损部件材料,可以大大延长生物质成型设备的维修使用周期,具有积极的经济价值。