【摘 要】
:
Viterbi算法是一种基于网格图的最佳序列译码算法,该算法以其优良的纠错性能广泛应用于各种通信系统中,但随着通信技术的发展,出现了多种通信标准,这些标准在进行信道编码纠错时,大多数采用卷积码与Viterbi算法相结合的编码方式。每个标准都有不同的编码形式,每种形式都对译码器提出了不同的要求。另外,制造商对构建可以在多种标准下运行的通信设备或系统有着浓厚的兴趣。这意味着通信设备既要兼容这些通信标准
论文部分内容阅读
Viterbi算法是一种基于网格图的最佳序列译码算法,该算法以其优良的纠错性能广泛应用于各种通信系统中,但随着通信技术的发展,出现了多种通信标准,这些标准在进行信道编码纠错时,大多数采用卷积码与Viterbi算法相结合的编码方式。每个标准都有不同的编码形式,每种形式都对译码器提出了不同的要求。另外,制造商对构建可以在多种标准下运行的通信设备或系统有着浓厚的兴趣。这意味着通信设备既要兼容这些通信标准,又要具有动态切换这些标准的能力。为了满足通信系统中存在的多种通信标准,本文设计实现了一款能够支持这些标准的高性能多模式Viterbi译码器。本文深入理解卷积码的译码算法及原理,并根据设计要求,对该Viterbi译码器进行了逻辑设计、验证与综合等工作,主要针对以下几个方面展开了研究:研究Viterbi译码基本原理,在Viterbi译码理论基上探讨支持多码率、多约束长度译码方法,根据要求设计实现了支持软、硬两种判决模式,同时可以对约束长度为5-9编码率为1/2、1/3和1/4的单移位寄存器卷积码进行操作,码率和约束长度由多项式确定,且支持任意帧长度。分析Viterbi译码器中各个模块最新研究方法,确定整体设计方案,并完成译码器的设计。其中,ACS计算单元采用4个基数为16的ACS级连结构,该结构每个周期执行4次ACS操作,在基数为16的子网格图上运行,因此跳过了四个网格阶段中的三个阶段的状态度量存储器输入输出操作,从而使状态度量存储器带宽减少75%;幸存路径管理部分采用回溯法与滑窗相结合的方式,并且支持三种回溯方式,这种管理方式能够解决译码时幸存路径存储器无法存储大数据量的问题;为了解决度量溢出问题,提出了一种改进的模归一法,与其他设计相比,本设计中的路径度量计算结果采用13 bit有符号数量化;同时为了确定译码结果是否可靠,在每次“加比选”计算后,都有1 bit的Yamamoto判断位。为保证设计的正确性和完善性,在完成设计后,根据设计要求及译码器工作方式,对该Viterbi译码器的各个模块进行验证,同时进行了系统级验证。使用MATLAB软件对译码器进行不同模式下误码率分析,结果表明该译码器完全满足多功能设计要求,适用多种通信标准,并得到很好的误码性能。根据项目要求采用55nm CMOS工艺,在该工艺下综合后得出工作频率达到了350MHz。
其他文献
钼基过渡金属硫族化合物(TMDs)被认为是实现纳米技术应用前景的功能材料,未来在量子物理、微电子学、超导等领域有大展身手的可能。当前使用的制备方法之中,化学气相沉积法(CVD)被认为是一种有前景的方法。之前的研究中通常使用固体前驱体(如金属氧化物和硫粉)作为CVD合成TMDs的生长原料。然而,不同的前驱体之间蒸气压差异较大,在CVD反应中实现前驱体的稳定供应较为困难,导致反应可控性和再现性较差。以
基于非冯诺依曼架构的存算一体(Computing-In-Memory,CIM)芯片在处理卷积神经网络算法领域展现了独特的优势。该架构芯片的核心组成是存算器件构成的存算单元阵列,存算单元输入、处理和输出信号均为模拟信号,读出电路负责将存算单元以电流形式输出的运算结果进行取样量化。存算一体芯片意在突破冯诺依曼架构带来的访存功耗墙瓶颈,且该架构芯片中的阵列和读出电路具有高密度的寄生负载,因此面向存算一体
在战场、重大事故中产生的不可控大量失血是许多创伤性死亡的主要原因,而常用的止血方法如按压止血、手术缝合或者纱布包扎无法在创面严重出血或大量渗血的情况下达到理想的止血效果;此外,传统的止血方法可能会给患者带来二次伤害,或不适用于人体内部等一些不可按压部位的止血。因此,开发新型止血材料具有重要的意义。根据人体自身止血机理发现,血凝块的形成是止血中最重要的部分,因此对于新型止血材料的研究也主要集中在如何
近年来,太赫兹有关技术领域蓬勃发展。超构材料作为一种新型人工复合材料具有普通材料所不具有的奇特性质,可以通过对结构的特定设计获得想要的磁导率和介电常数从而实现操控电磁波的目的。超构材料与太赫兹波相互作用强,因此它被广泛应用在太赫兹技术领域,我们见证了太赫兹超构材料共振器件的快速发展。法诺谐振和电磁诱导透明作为两种典型的谐振效应具有许多奇特的电磁特性,如高Q值、非对称线形、非线性、慢光效应等,它们在
近年来,利用3D打印技术制备连续纤维增强复合材料已经成为研究热点,引入智能性打印基材则可进一步拓展复合材料的功能和应用前景。借助打印技术引入连续纤维可定制化生产轻质高强复合结构材料,一体成型,降低成本。打印过程中,将形状记忆智能高分子基材与连续纤维复合,能够在特定刺激下改变其形状,可用来设计增强结构的自展开或自适应功能,未来在航空航天等领域有着巨大的应用潜力。然而,前期研究表明,打印工艺对连续纤维
现代处理器普遍采用高速缓冲存储器(Cache)来缓解处理器与主存储器之间的性能差距。然而,Cache的访问速度随容量的增大而降低,对于频率要求与处理器核几乎保持同频的L1 Cache而言,其容量注定不能很大,从而限制了高性能处理器的发展。因此,探索Cache容量和频率之间的平衡,设计高频的大容量Cache具有重要的现实意义。此外,随着集成电路技术的发展,人们对于处理器性能的需求日益提高,多核乃至众
磁随机存储器(MRAM)是一种基于电子自旋性质实现信息非易失性存储的新型存储设备,是下一代通用存储器解决方案的有力竞争者。本文针对MRAM关键刻蚀工艺中集成密度和刻蚀停止终点两个方面开展相关研究工作。首先设计了一种高密度MRAM刻蚀工艺的优化方案,实现了磁隧道结(MTJ)单元侧壁刻蚀角度的改善以及存储阵列集成度的提升;针对刻蚀停止终点问题,提出了一种预测方法,该方法用于准确预测不同刻蚀条件下的刻蚀
作为第三代半导体的一员,AlGaN的研究和发展已取得重大进步,同时基于此材料的紫外探测器也得以空前发展。由于各类型AlGaN基紫外探测器(Ultra-violet photodetector,UV PD)具备不同的结构和工作原理,其光增益性能也有所不同。为进一步了解相关探测器的增益机制并拓宽AlGaN材料的应用范围,本文设计了不同结构的AlGaN基紫外探测器,包括日盲紫外雪崩光电二极管(avala
细菌具有高度的适应性和可再生性,易导致食物、医疗设备等污染进而引起严重的感染疾病。作为临床上常用于治疗这一疾病的方法,抗生素的过度使用导致了耐药菌的出现,削弱了治疗效果。光线治疗,尤其是光热治疗和光动力治疗,因抗菌谱广以及无耐药性等优势成为了极具应用前景的治疗手段。然而,大多治疗体系基于光热转化试剂和光敏剂的简单组合,需要双波长激发,易导致治疗不同步以及副作用叠加等问题。此外,大多数治疗剂水溶性差
目的:探讨基于健康行为互动模式的干预方案在早期宫颈癌术后合并盆底功能障碍性疾病患者盆底康复中的应用效果。方法:本研究选取无锡市某三级甲等医院妇科收治的128例早期宫颈癌术后合并盆底功能障碍性疾病的患者,采用随机数字表法将其分为试验组和对照组。试验组(64例)采取基于健康行为互动模式的盆底康复干预方案,对照组(64例)接受常规盆底护理干预方案。本研究干预周期为3个月,在干预前、干预1个月后、干预3个