面向散文的文意理解选择题答题技术研究

来源 :山西大学 | 被引量 : 0次 | 上传用户:xyc657924564
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
机器阅读理解是近年来自然语言处理一个热门研究领域,本文聚焦高考语文文意理解多选题,该题型考查的是对文章局部信息、主旨、作者意图和态度的把握,文意理解的选项复杂多变,主要测试机器对文章语义关系、散文结构、写作技巧、篇章主题和作者情感等内容的理解能力以及对文章整体的把握能力,挑战极大。本文首先分析选择题与选项特点,其次将选择题答题技术分为两种,一种是基于两段式的阅读理解答题技术,一种是基于联合训练的端到端答题技术,并提出多种候选句抽取方法和基于联合训练的阅读理解解答题方法,最后在近14年北京高考语文真题上进行测试,具体研究工作如下:(1)选项分析:我们对选择题进行了全面而细致的分析。首先从候选句抽取问题出发,我们将选项分为2大类;结合2019年高考语文《考试大纲》、答题技巧和分析策略,本文将近16年的选择题分为4大类,大类和小类构成两级类别体系。(2)基于两段式的选择题答题技术:本文采用了基于统计的候选句抽取方法、基于词嵌入的相似度计算方法、基于神经网络的候选句抽取方法,蕴含推理阶段采用多对一文本蕴含推理模型。此外,在该方法基础上,提出一种基于语义增强的句子相似度计算方法,答案预测的蕴含结果的F1值为66%,最终题目准确率达44%。(3)基于联合训练的选择题答题技术:本文结合答题的反常机制,针对该问题设计了一种多轮对齐架构和多向匹配机制的深度神经网络联合模型(MWM_MRC)将候选句抽取和蕴含推理任务进行联合建模,在高考散文阅读理解选择题数据集上蕴含的F1值超过目前最好的模型,达到了71%,题目准确率达到了62%,验证了模型的有效性。本文将两段式和联合训练答题技术应用于高考散文阅读理解选择题答题系统,该系统设计并实现了多种高考散文阅读理解选择题答题策略,并已经应用于国家高科技发展计划项目(2018YFB1005103-3)中的高考语文答题机器人。
其他文献
跨模态检索技术是信息检索领域的研究热点,该技术是指通过放入一种模态的数据进行查询,之后检索并返回的结果是与查询时不同的另一种模态的数据,但两种数据的表达相关。当前跨模态检索技术存在的根本问题是不同模态的数据在表达上虽然都是表示同一件事情,即它们在语义上具有关联性,但是抽取出的底层特征所处的空间结构差异太大,即特征空间上存在异构鸿沟。处理好跨模态检索技术难题的关键是解决底层特征上存在的结构差异性、关
半监督聚类是将半监督学习和聚类算法相结合,通过已有的先验信息指导聚类提高算法性能,在生物医学、图像处理、自然语言等领域广泛应用。先验信息主要分为少量带标签的样本集和成对约束两类,现阶段半监督聚类算法大多单一的使用一种监督信息指导聚类,这样会造成一些先验信息的浪费,本文将如何同时使用两种先验信息进行指导聚类算法进行了系统研究,并且扩充了成对约束信息从而提高了算法性能。主要工作如下:(1)提出了一种基
词义理解是人在阅读中必备的一种能力,也是考试阅读理解中重要的一项考察内容。词义理解题通常有两种形式:(1)词义辨析题:给定目标词语及其释义,判断该释义是否为目标词所在上下文的意义。(2)词义解释题:给定目标词及其上下文,给出目标词的意义解释。本文针对这两类挑战性问题提出了相应的解决策略。本文的主要工作如下:(1)尝试了基于相似度的多策略词义辨析题解答方法。本文从词义辨析题的解答难点及人类解题的思路
随着互联网技术的飞速发展,网络上的新闻数据呈指数级增长,对新闻语料进行关键词提取有助于终端用户快速了解新闻内容,有助于新闻媒体机构对新闻进行快速分类和检索,更有助于高效编辑和管理。传统关键词主要是通过手工标注方式,数据量大、维度高,同时需要大量昂贵人力和时间资源,已经远远不能满足系统高效实时可用等需求。本文基于新闻领域设计和实现了一个智能关键词提取系统,该系统利用深度学习模型自动进行特征学习,采用
作为数据挖掘的一项重要技术,聚类分析已经逐渐成为一种跨学科、跨领域的数据分析方法。传统的聚类是一种无监督的分析方法。半监督聚类主要是将少量先验知识融入到聚类过程中以获得更好的聚类结果。本文以半监督聚类为主题,就聚类的有效性进行了评估分析,主要研究内容如下:(1)大量的不同类型的半监督聚类算法已被提出,评估其算法的有效性已成为半监督学习的重要研究内容之一。然而,已有评估方法主要以无监督聚类结果为基准
在当前社会中,智能安防越来越凸显其价值,是维护社会长治久安的重要手段。自动视频分析系统是智能安防系统的一个子系统,主要是从监控视频内容中提取关键的行人信息。行人重识别正是自动视频分析系统的核心技术之一,目前已成为了深度学习领域的研究热点。近年来,基于深度学习行人重识别方法在开源数据集上已经表现出优越的性能,但是在跨域行人重识别问题上性能明显下降。本文深入分析了跨域行人重识别存在的问题,并利用深度学
近年来,面向智慧司法服务的法律判决预测已成为自然语言处理领域的研究热点。判决要素抽取是法律判决预测研究的重要子任务之一,其旨在从法律文书的事实描述中自动识别出不同的判决特征,现有研究主要是从法律文书的事实描述部分抽取出判决要素词汇或句子。法律判决要素抽取是判决预测研究的重要依据,为判决预测的结果提供可解释性。本文基于2019中国“法研杯”司法人工智能挑战赛“要素识别”任务,重点研究面向法律文书事实
聚类集成能够产生高质量和鲁棒的划分结果,解决了单一聚类算法只能解决特定问题的缺陷。聚类集成主要包括了两个步骤:(1)生成基划分;(2)信息矩阵的表示及生成一致性聚类结果。加权聚类集成和聚类集成选择是从不同的角度进一步提高聚类集成方法性能的两种方法。聚类集成选择生成基划分后采用不同的准则选出高质量的基划分结果,目前鲜有工作从基划分结果中簇之间的关系出发设计衡量基划分质量的标准。现有的加权聚类集成方法
中西方绘画是世界历史文明发展史上重要的文化作品形式之一。在历史进程中出现了许多优秀的绘画作品,这些优秀作品是研究历史、文化、艺术和科技的重要载体。随着互联网技术数字化的日益普及,越来越多的绘画艺术作品被录入电子图书馆,艺术爱好者欣赏优秀的绘画作品变得更加容易。逐渐增加的数字绘画图像为学者们带来丰富的研究资源,同时,如何将大规模的数字绘画图像进行有效分类,是目前亟需解决的热点问题之一。绘画作品与普通
近年来,机器阅读理解研究受到国内外自然语言处理领域学者的广泛关注,已成为评价基于自然语言理解的智能系统的核心任务之一。2015年,国家科技部启动“语言问题求解和答案生成关键技术及系统”项目,其主要目标是研制出能够参加我国高考的智能答题机器人,并提升机器对自然语言的理解能力。在该项目的推动下,面向真实高考阅读理解试题的自动答题研究成为近年来机器阅读理解任务中的又一挑战。深度学习方法已被证明是机器阅读