论文部分内容阅读
本文先从整体上分析了体上矩阵理论目前发展的景况,阐述了体上矩阵研究的困难性,然后对体上矩阵的三个方面的问题加以具体研究.文章研究了体上矩阵的满秩分解以及它的应用,给出了Sylvester不等式和Frobeniua不等式等经典秩的不等式的证明;研究了矩阵多项式的满值分解,推广了域上多项式的理论;给出了体上Hadamard积的性质,得出了自共轭矩阵Moore-Penrose逆的不等式.另外给出了特殊分块矩阵群逆的存在性以及表达式.最后文章对所做的成果做了总结并对将来体上矩阵理论的发展前景作了展望. 本论文所得结果是对域上矩阵理论的推广,也有的是对前人做的体上矩阵结果的改进,这其中也有很多最新的结果. 全文共分五章: 第一章简单介绍了体及四元数体的产生背景及思想来源,并给出了体及四元数体的一些基本定义,最后简述了论文的结构框架. 第二章主要研究了体上矩阵满秩分解理论及应用,给出了矩阵多项式的满秩分解理论,丰富了体上的矩阵理论. 第三章主要研究了四元数矩阵的特殊积:Hadamard积的性质问题进行研究,推广了域上Hadamard积的性质,得到了比较好的结果. 第四章研究了体上矩阵广义逆问题,主要是二阶分块矩阵的群逆问题,并且给出了在不同的条件下,群逆的表达式. 第五章简单地介绍了文章所得结论和一些展望.