论文部分内容阅读
研究区域尺度的森林生态系统碳收支对于了解森林固碳能力及干扰对森林碳储量的影响具有重要的意义。加拿大林业碳收支模型(CBM-CFS3)是IPCC推荐使用的基于森林资源清查的碳计量模型。本文以普洱地区乔木林生态系统(林木胸径大于5cm)为研究对象,使用CBM-CFS3模型对普洱地区2005-2014年不同生态区、起源、地力等级及不同森林类别的森林生态系统碳储量及碳收支动态进行研究。基于云南省和普洱地区森林调查数据生成模型所需的基础数据集和生长方程、森林清单数据和森林干扰事件,并根据文献资料总结出云南普洱地区相关参数,然后对模型进行运转、调试和模拟。基本结论如下:(1)区域尺度全林分蓄积生长模型系统根据云南省连续六次森林资源连续清查(即“一类清查”)的固定样地数据拟合出全林分蓄积生长方程;采用Richards函数拟合出不同分类方式下森林蓄积生长方程,共28个。所有方程的拟合度基本均在0.7以上,预估精度均在90%以上,全部通过适用性检验。此模型系统所估算的普洱地区森林蓄积总量与普洱地区2005年森林资源规划设计调查(又称“二类调查”)蓄积量对比精度达97.43%,表明此模型系统估算区域尺度森林蓄积效果理想。(2)优势树种组蓄积-生物量转换方程及生物量碳储量基于实测数据与收集到的文献数据,根据普洱地区主要优势树种(组)分类,拟合出8个蓄积-干材生物量转换方程。蓄积-干材生物量转换方程R2范围为0.6604-0.9697,拟合效果较好;树枝、树皮和树叶三个生物量组分比例拟合效果最好为树叶,其次为树枝,最差为树皮。模型所使用的相容性多项对数方程对于估算生物量各组分占总地上生物量的比例较为简便且有效。模拟期间(2005-2014年)不同森林类型年均生物量碳密度范围为17.43-132.57Mg Cha-1;碳密度最大优势树种为云杉(Picea Dietr.),最小为杉木(Cunninghamia R. Br)。生物量各碳库排序为商品材碳库(23.53Mg C ha-1)>其他木碳库(7.21Mg C ha-1)>粗根碳库(6.99Mg C ha-1)>叶碳库(2.46Mg C ha-1)>细根碳库(1.57Mg C ha-1)。阔叶树种所有生物量碳库碳密度均大于针叶树种。普洱地区年均生物量总储量为117.9256Tg C,思茅松(Pinus kesiya var. langbianensis)占普洱地区生物量碳储量的38.43%。思茅松、栎类(Quercus L.)及其它阔(Other Broadleaf)三个树种组所占碳储量比例总和达97.28%。阔叶林生物量碳储量占普洱地区比例为61.15%,针叶林占38.85%。将模型估算的普洱地区生物量碳储量与使用IPCC国家温室气体清单指南推荐的BEF值法估算的碳储量对比可知,二者极为接近,估算精度达到93.45%,可以认为CBM-CFS3模拟结果可靠有效。(3)周转、分解参数及DOM碳库密度与储量采用文献数据获得模型所需的不同森林类型的生物量周转及分解参数。模拟期间(2005-2014年)不同森林类型年均DOM碳密度范围为74.71-139.02Mg C ha-1,DOM碳密度最大为硬阔类,最小为思茅松。普洱地区森林年均枯落物碳密度为11.64Mg C ha-1,死木碳密度为8.32Mg C ha-1,土壤有机质碳密度为75.10Mg C ha-1,土壤碳库是DOM碳库中最为重要的碳库。普洱地区DOM储量为268.4145Tg C,思茅松DOM碳储量最大为106.0439Tg C,占普洱地区森林DOM碳储量的39.51%。思茅松、栎类及其它阔这三个优势树种组DOM碳储量之和占普洱地区森林DOM碳储量的96.32%。(4)干扰对森林碳储量的影响采用2006-2011年普洱地区林业统计数据,归并出皆伐、造林、毁林、不同强度的商业疏伐、自然演替及不同等级的通用死亡率等具体31种干扰类型,以各类型的年均干扰面积模拟对森林碳储量的影响。模拟期间(2005-2014年)年均干扰面积为52363.7ha,整个模拟期内采伐转移到木产品碳库579.00Gg C,燃烧释放300.17Gg C,并使生态系统内部生物量库转移529.56Gg C到DOM碳库中。(5)普洱森林生态系统碳密度与碳储量2005-2014年普洱地区生态系统年均碳密度为136.81Mg C ha-1。不同森林类型碳密度范围为106.64-261.02Mg C ha-1,最小值为思茅松,最大值为云杉;生态系统碳储量范围为0.2899-151.3630Tg C,储量最小为云杉,最大为思茅松。普洱地区边缘热带森林生态系统碳密度为128.90Mg C ha-1;南亚热带为140.87Mg C ha-1;天然林碳密度为141.70MgC ha-1,人工林为110.25Mg C ha-1。地力一级碳密度为196.99Mg C ha-1;地力二级为131.71Mg C ha-1,地力三级为154.25Mg C ha-1;生态公益林碳密度为157.17Mg C ha-1,商品林为131.01Mg C ha-1,新造林地为51.01Mg C ha-1。普洱地区森林生态系统总碳储量为386.3401Tg C。普洱地区边缘热带碳储量为123.3384Tg C;南亚热带面积接近边缘热带的两倍,其碳储量为263.0017Tg C;天然林生态系统碳储量为338.6239Tg C,人工林为47.7162Tg C,天然林碳密度大于人工林,并且面积约为人工林的7倍,因而天然林碳储量远大于人工林。地力一级生态系统碳储量为37.1195Tg C;地力二级为334.8170Tg C,地力三级为14.4037Tg C;地力一级碳密度高,但地力二级面积占有绝对优势,因而地力二级碳储量最大。生态公益林碳储量为110.5601Tg C,商品林面积约为生态公益林的3倍,其碳储量为274.4132Tg C,新造林地碳储量为1.5036Tg C。(6)普洱地区森林生态系统碳收支2005-2014年间,普洱地区森林单位面积NPP年均值范围为2.40-6.11Mg C ha-1a-1,云南松最低,其它阔最高;年均NEP范围为0.62-1.90Mg C ha-1a-1,云杉最低,其它阔最高;NBP范围为0.46-1.60Mg C ha-1a-1,思茅松最低,桦木最高。普洱地区森林NPP总量范围为0.0054-4.4201Tg C,云杉最低,思茅松最高;NEP范围为0.0007-1.2906Tg Ca-1,NBP范围为0.0007-1.0445Tg C a-1,NEP与NBP总量均为云杉最低,其它阔最高。所有森林类型均表现为碳汇。普洱地区森林单位面积NPP值平均为4.15Mg C ha-1a-1。普洱地区边缘热带单位面积NPP为3.96Mg C ha-1a-1,南亚热带为4.24Mg C ha-1a-1;天然林NPP为4.06Mg C ha-1a-1,人工林为4.57Mg C ha-1a-1;地力一级森林NPP为5.32Mg C ha-1a-1,地力二级为4.04MgC ha-1a-1,地力三级为4.66Mg C ha-1a-1;生态公益林NPP为4.38Mg C ha-1a-1,商品林为4.07Mg C ha-1a-1,新造林地为3.68Mg C ha-1a-1。对于年均生产力指标总量而言,普洱地区森林NPP总量为11.7210Tg C a-1,边缘热带NPP总量为3.7918Tg C a-1,南亚热带为7.9292Tg C a-1;天然林NPP为9.6669Tg C a-1,人工林为2.0542Tg C a-1;不同地力等级森林中,地力一级NPP为1.0021Tg C a-1,地力二级为10.2843Tg C a-1,地力三级为0.4347Tg C a-1;不同森林类别森林中,生态公益林NPP为3.0821Tg C a-1,商品林为8.5286Tg C a-1,新造林地为0.1104Tg C a-1。普洱地区年均NPP总量为11.72±0.30Tg C a-1,其中73.68%通过分解作用释放到大气中,剩余部分为NEP(总量为3.09±0.21Tg C a-1)。NEP中大约7.5%的碳量通过采伐及燃烧移出生态系统;NEEC平均值为-2.79±0.19Tg C a-1;NBP为2.21±0.17Tg C a-1,净固碳率(NBP/NPP)为18.82%,反映出普洱地区森林生态系统碳积累能力较强。普洱地区森林生态系统表现为碳汇,中幼龄面积占绝对优势,固碳率较高,研究结果合理可信。CBM-CFS3应用于普洱地区时表现出适用性与灵活性。以森林资源清查数据为数据源,清楚地模拟干扰影响下森林碳储量年变化是CBM-CFS3的优势,但该模型在空间性、地下生物量估算、DOM估算、模拟森林对短期气候变化的响应方面应进一步加强。借鉴CBM-CFS3估算方法对于提高我国碳计量水平具有重要的意义。