Lie对称在若干非线性偏微分方程组边值问题中的应用

来源 :内蒙古工业大学 | 被引量 : 0次 | 上传用户:hubingguixuejing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自然科学和工程技术中的很多问题本质上就是微分方程,而偏微分方程(组)(简称为PDEs)是微分方程研究的主体,特别是非线性PDEs(简称为NLPDEs),所以求解NLPDEs的研究具有重要的意义.由于非线性方程本身的比较复杂,所以求解具有一定的难度.为了求解PDEs人们提出了众多求解方法,但还没有统一而系统的方法包揽各种解的求解,并且这些方法具有各自的适用范围.从而研究求解方法仍是数学、物理、力学学科中的基础性问题,特别是现有方法的改进、总结归纳、加深认识、接纳优点、摒弃缺陷,尤为必要,是发现新方法的前提.众多方法中Lie对称是通用性最好的方法,它以众多传统方法为其特例.目前 PDEs对称理论和方法在数学、物理和力学等学科中得到了广泛的应用.本文将基于微分特征列集算法,对Lie对称方法和对称分类在NLPDEs边值问题中的应用进行研究.具体研究内容有:  第一章,着重综述了对称方法的发展现状和在PDEs的研究中的重要性,并介绍了微分特征列集算法、龙格-库塔法和同伦摄动法.  第二章,通过有效结合对称方法和数值计算方法(即龙格-库塔法),求解了一个流体力学中的NLPDEs边值问题的数值解.  第三章,研究对称分类在 NLPDEs边值问题中的应用,具体计算了2个流体力学中的NLPDEs边值问题的对称分类,并对其进行了求解.步骤如下:(1)基于微分特征列集算法,分析确定了含参数的NLPDEs边值问题的对称分类,并根据方程参数的不同取值,分类确定方程的主对称和扩充对称.(2)利用确定的扩充对称将所研究的NLPDEs边值问题约化为ODEs初值问题.(3)借助Mathmatica符号系统,求解了ODEs初值问题的数值解.  第四章,通过将对称方法和近似解析解方法(即同伦摄动法)有效的结合,求解了2个NLPDEs边值问题.先利用对称方法把NLPDEs边值问题约化为ODEs初值问题,再利用同伦摄动法对其进行求解,得到了近似解.最后利用数值方法得到了数值解,并与近似解进行比较,验证了近似解收敛于数值解.  最后总结文章所研究的内容,并对下一步的相关研究进行了展望.
其他文献
矩阵的Drazin逆作为广义逆理论中一个非常重要的研究分支,它在求解奇异微分方程,差分方程,算子理论,迭代法和数值分析等方面都有着广泛的应用,因此矩阵的Drazin逆的表示及计
该文主要分两大部分:1.(块)H矩阵类的简捷判据:主要是给出了(块)H矩阵的充分条件和充要条件,这些条件是已有结果的推广和改进.如2.1节研究了块H矩阵的简捷判据,2.3节研究了H-
该文介绍了图像预处理当中的色彩转换以及利用行程编码算法对输入的图像进行压缩;其次,介绍了卷积的概念以及以此为基础的各种图像操作,分别给出了对图像进行平滑或锐化处理
复合介质材料是现代物理学的一个重点研究课题.把几种性质不同的组分材料经过多种形式和技术的组合就会形成一种新的材料,即复合介质材料,其优点是,不但能延续其组分材料固有
J.Delgado等人于2003年构造了一种n次基函数,该基函数是规范全正的,简称为J-NTP基。对给定的n+1控制顶点,以n次J-NTP基作为调配函数得到的n次曲线具有保形性,并且对所有的求值算法
该文主要包括两个方面的内容:一是Wiener泛函的分数次正则性与连续性的研究,二是某些条件下平方协变差的存在性及其拟必然性质的证明和讨论,以及现有的Ito公式的推广.1、分数