论文部分内容阅读
针对我国资源利用率低、人均资源量匮乏的不足,超超临界汽轮机、热电联合循环等大型发电机组因其绿色高效成为能源产业核心装备的主要发展趋势。但是大型发电机组的末级叶片通常超过一米,再加上国家对电厂调峰能力的要求不断提高,使得末级长叶片常常在湿蒸汽区承受着复杂的非线性流体激励,诱发叶片振动,影响运行安全。本文以某蒸汽轮机组末级为研究对象,基于计算流体动力学和计算结构动力学理论,对该机组在变负荷工况下的流体激励及振动响应、转子系统的气弹稳定性能与影响因素进行深入的研究。首先从长叶片固有振动特性出发,进行各负荷工况的流场计算,开展叶片在静止、额定转速和变负荷三种状态下的模态分析;随后从流场结果中提取气动载荷,探究长叶片在变负荷情况下的静态振动特性。研究发现在额定转速条件下,低阶模态固有频率远大于静止状态;叠加了气动载荷之后,固有频率总体变化程度较小,但是对扭转振型或者以扭转振型为主的频率影响相对较大。当承受离心气动复合载荷,其静态振动响应则可以近似看成离心位移与气动位移在轴向的叠加。然后通过双向流固耦合方法,分析非定常压力波动,总结叶片变形对流场的影响;同时探讨了非定常流体激励下长叶片的动态振动特性。研究发现叶片变形对流场参数影响最大的区域主要分布在叶片前缘。另外由于两种流量工况下叶片在轴向分别承受两个相反方向的激振力,使得后续叶片的响应在1.0 kg/s工况下顺流向振动;在0.1 kg/s工况下,叶片逆流向振动,而且该工况50%叶高的振动模式为一阶模态和二阶模态的复合振动,叶顶则为一阶模态振动。最后基于一阶弯曲模态的非定常计算,探讨了长叶片在变负荷条件以及变叶间相位角两种因素下的气动弹性稳定性;从气动功密度,气动功和积累功等角度阐述诱振机理。结果表明,在180°叶间相位角变负荷工况下,气动阻尼系数随着进口流量的降低也逐渐减小,而且发现进口参数对气动弹性的影响主要分布在70%至90%叶高吸力面;在1 kg/s变叶间相位角条件下,在叶间相角为90°时会出现颤振失稳现象,在-90°时,气弹稳定性最好;另外当叶片振动处于前行波模式下,气弹性能在不同叶间相位角下的主要区别存在吸力面;在后行波模式下,它们作用的区别则同时存在于吸力面和压力面。