Bailey对与U(n+1)Bailey对及其应用

来源 :河南师范大学 | 被引量 : 0次 | 上传用户:icanfly316
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文首先利用“简单”Bailey对推导了多个q-级数的求和公式和变换公式,其次利用其中一个5φ4求和公式和Bailey对求出更多求和公式和变换公式,最后利用U(n+1)Bailey对给出了一些求和公式和变换公式的U(n+1)拓广.  在第一章,主要介绍了q-级数的基本概念和符号.  在第二章,应用“简单”Bailey对和Bailey变换,推出包括一个5φ4和在内的若干求和公式和变换公式.  在第三章,利用5φ4求和公式,推出一个WP-Bailey对、一个WP-共轭Bailey对以及一个Bailey链,并应用这些结果,构造出更多的求和公式和变换公式.  在第四章,利用一个3φ2求和公式的U(n+1)拓广,构造了Bailey链的U(n+1)拓广,并给出一些应用.
其他文献
无论是由线性、仿射或者凸函数定义的不等式系统,不等式系统包含关系的对偶特征在优化和数学规划问题中都起着非常重要的作用。这个对偶条件经常出现在推广的Farkas引理和可解
本论文由两个部分组成.首先将一个Crouzeix-Raviart型各向异性非协调矩形元应用到一类抛物积分微分方程,给出了Crank-Nicolson全离散格式下的变网格有限元方法.利用该有限元插
Run-to-Run(RtR)过程控制自上世纪90年代提出之后,已获得了大量的研究与发展。它是SPC与EPC的一种联合控制方法,取各自的优点,弥补彼此的缺点。现有大量文献都是集中在过程中有
分数Brown运动作为普通Brown运动的推广,在许多领域有着重要的应用,因此有必要研究将分数Brown运动作为输入噪声的随机微分方程。本文主要研究了由分数Brown运动驱动的积分方程
正交表是组合设计理论与试验设计理论所研究的重要课题之一.随着现代科技的迅速发展,许多组合数学家和统计学家将对正交表的研究应用到农业、医药、制造业、计算机科学及密码
随机序是基于随机变量的某些特征(如分布、期望、方差等)来比较随机变量的“大小”或离散程度的一种方法。随机序理论在可靠性理论、经济学、保险精算、风险决策理论、排队论
The thesis is divided into two parts.The first part is a survey on classical representability theorems.The emphasis is on the role of triangulated structure,i.e.