【摘 要】
:
中国拥有全球第二大的磷矿石储量,且作为黄磷生产消费大国,在世界占有庞大的磷产品市场。黄磷是众多行业中必不可少的基础原料,其生产方法主要为电热法,每生产1吨黄磷,电耗在13000~15000 k W·h之间,并会产生8~10吨的黄磷炉渣,炉渣利用率仅为10%,且炉渣出炉带出大量废热无法回收利用。本研究在国家重点研发项目资助下,以磷资源清洁利用与重污染固废源头近零排放为目的,针对黄磷产业的高能耗,资源
论文部分内容阅读
中国拥有全球第二大的磷矿石储量,且作为黄磷生产消费大国,在世界占有庞大的磷产品市场。黄磷是众多行业中必不可少的基础原料,其生产方法主要为电热法,每生产1吨黄磷,电耗在13000~15000 k W·h之间,并会产生8~10吨的黄磷炉渣,炉渣利用率仅为10%,且炉渣出炉带出大量废热无法回收利用。本研究在国家重点研发项目资助下,以磷资源清洁利用与重污染固废源头近零排放为目的,针对黄磷产业的高能耗,资源利用不足等问题,研究了黄磷常规生产过程与添加活性组分Mg O后的非常规生产过程中,钙、硅等元素的迁移变化规律,及不同体系熔融温度的变化情况;并探讨了不同冷却方式对黄磷炉渣形成和物相结构的影响,为炉渣后续处理和实现全量资源化利用提供参考价值。利用Fact Sage7.1热力学计算软件对常规和非常规体系磷矿石碳热还原反应过程中可能发生的反应进行了热力学计算,并对不同体系进行了相图计算。发现在非常规体系中,主要可能生成的物质是Ca Mg Si O4、Ca Mg Si2O6、Ca2Mg Si2O7和Ca3Mg Si2O8。根据相图计算结果,发现在常压下,1400°C时体系中出现纯液相组成区域,说明Mg O的加入可促进体系发生熔融并产生液相。用微机灰熔融性测定仪测定了常规与非常规体系的熔融温度。常规体系下,Si O2/Ca O(质量比)介于0.85~1.45之间时,体系各种温度指标随Si O2添加量的增高而增高,在Si O2/Ca O为0.85时,体系各种温度指标最低,流动温度为1406°C。非常规体系下,固定Si O2/Ca O为0.85,Mg O/Ca O介于0.5~1.5之间时,体系各种温度指标随Mg O添加量的增高而增高,在Mg O/Ca O为0.5时,体系各种温度指标最低,流动温度为1250°C。Mg O的加入可使体系流动温度降低156°C。对常规和非常规体系进行了管式炉实验,并结合热力学计算和炉渣XRD分析结果,探讨了不同体系中的主要反应历程,和Ca、Si、Al、Mg几种主要元素的存在形式及迁移过程。结果表明,不同体系中都会首先发生Ca5(PO4)3F的脱氟反应,随温度升高,常规体系中会产生CS、C2S和C3S几种不同形式的硅酸钙盐,而非常规体系会产生Mg2Si O4、Ca Mg Si O4和Ca Mg Si2O6等镁质矿物。不同体系中Al元素的存在形式都为Ca2Al2Si O7,而非常规体系中由于Mg O的引入,而改变了Ca和Si的迁移路径和物相存在形式,使体系中出现了镁橄榄石和钙镁橄榄石等矿物,易与其他硅酸盐发生低温共熔并产生液相,这是非常规体系熔融温度降低的主要原因。通过杂质影响实验,发现Al2O3、Fe2O3、Mg O、KF几种杂质对磷酸钙还原过程造成了不同程度的影响。Fe2O3被C还原的产物Fe会与溢出的P4结合为Fe2P留于渣中,从而减少了磷还原率;KF的引入会使F进入炉渣对后续处理造成一定影响;Mg O在一定程度上可使体系出现低温共熔并增加物料流动性;Al2O3会提升炉料的酸度,使体系粘度增大阻碍物料间的充分接触,从而降低反应速率和产率。对不同体系磷矿碳热还原反应动力学进行了分析,结果显示,常规和非常规体系的反应活化能分别为157.39 k J/mol和98.42 k J/mol,非常规体系的活化能明显小于常规体系;并对常规体系磷矿碳热还原过程可能的机理函数进行求解,结果表明,常规体系磷矿碳热还原过程符合收缩球状相边界反应模型,最有可能的机理函数为:(?)=3(1-α)2/3。对不同体系的炉渣在不同出渣温度下进行自然冷却、水淬冷却和风淬冷却三种不同冷却方式的处理,结合XRD和SEM等分析手段发现,在实验条件内,相同体系下不同冷却方式对炉渣的物相结构影响并不显著。风淬冷却可使常规体系在较低的出渣温度下形成玻璃体含量较高的炉渣,而水淬冷却可使非常规体系在较低的出渣温度下形成玻璃体含量较高的炉渣。不同冷却方式炉渣的微观形貌各有差别,自然冷却炉渣的表面会出现不同形状的颗粒结晶,并随出渣温度的升高而减少;水淬冷却炉渣的表面相对光滑明亮,颗粒表面会因为应力变化而出现裂纹;风淬冷却炉渣的表面会出现不同大小的孔状结构,且颗粒粒度较小。
其他文献
中缅油气管道龙陵段主要为粗晶黑云母花岗岩分布区,地表风化强烈,管沟回填土为花岗岩风化残积砂土,管道作业边坡坡面侵蚀十分严重。又因为花岗岩全风化后的残积层,岩土体结构松散,并伴随有大量的节理和裂隙发育,力学特性不稳定,极易被流水冲刷;管道上部基本为就地取材的风化层碎屑土,回填土土质更疏松,其与自然坡面原状土体的性质有很大的差别,表层易被流水冲刷。因此,需要对对全风化花岗岩地区坡面流水侵蚀灾害的机理进
传统的金属基复合材料往往通过在金属基体中外加颗粒,通过均匀分散和界面控制,可以充分发挥组分间的协同效应和界面效应,获得优异的综合性能。然而,这种制备理念下的复合材料大多以“均匀”的单级复合结构为特征,对“结构效应”下复合材料组织和性能的影响研究不够深入,会造成基体材料的铸渗效果不理想,增强体与基体结合强度低,在磨损工况下容易导致WC颗粒的脱落。传统的WC/Fe复合区一般设计为层状,即复合层厚度低于
人类社会可持续发展依赖于能源的有效供给。我国能源消费以传统化石能源为主。消费过程中引发的一系列环境问题迫使我国亟需提高清洁能源消费占比。为此,作为传统化石能源的替代能源,非常规天然气(主要包括页岩气、煤层气和致密气)的勘探与开发工作对于优化我国现行能源消费结构和缓解环境污染问题具有重要现实意义。其中,我国页岩气资源丰富,因此受到广泛关注。目前,页岩气勘探开发进程已进入规模化开发阶段。现阶段,我国依
纳米材料因其尺寸非常小,从而具备某些块体材料不具备的优良特性,例如表面与界面效应、小尺寸效应等。二维材料作为纳米材料中的一员,其非凡的物理和化学性质而吸引了越来越多的关注。石墨烯作为二维材料代表,尽管具有极高载流子迁移率,但这种材料在二维单层形式下缺乏带隙,这使得石墨烯在半导体开关技术应用上没有优势。TMD材料虽然有理想的带隙并且有较高的开关比,但是其载流子迁移率不够高。磷烯既具有较好的带隙也有较
随着油气管道建设的高速发展,由极端降雨天气造成的地质灾害对管线路段影响日益剧增,雨水的作用无疑是造成这些灾害发生的原因,雨水的入渗往往改变坡体内部渗流场参数,所以必须先对降雨条件下坡体内部渗流场演变规律进行充分探讨与研究,才能进一步研究降雨工况下坡体稳定性。本文是以中缅油气管道龙陵段管道两侧的全风化花岗岩作为试验研究对象,采用理论分析、室内物理模型试验及数值仿真模拟的方法手段来开展研究工作,室内构
化学链CH4重整耦合CO2分解工艺是一种能够同时生产合成气和利用CO2的工艺。在该技术中,CH4首先被氧载体中的晶格氧部分氧化为合成气(H2+CO);随后,被还原的氧载体从CO2中获取氧原子,用以恢复其在CH4部分氧化过程中缺失的晶格氧,并同时产生CO。设计与构筑活性高与稳定性强的氧载体是实现该技术的关键所在。镧基钙钛矿氧化物由于其独特的结构特性及优异的储放氧性能可以作为化学链CH4重整技术过程中
化学链CH4重整耦合CO2还原过程是一项很有前景的技术,该技术主要分为两个步骤,首先利用氧载体的晶格氧将CH4部分氧化为CO和H2;然后以CO2为氧源对氧载体进行再生,同时产生CO。该技术既完成了CH4的转化和利用又达到了CO2减排的目的。设计与构筑高活性与稳定性的氧载体是实现该技术的关键所在。铈基氧载体由于其独特的结构特性及优异的储放氧性能可以作为化学链CH4重整耦合CO2还原工艺的氧载体。在化
2019年12月底,湖北省武汉市暴发了由新型冠状病毒(SARS-CoV-2)引起的肺炎疫情。迄今为止,该病毒引起的疫情仍在全球流行,累计感染人数超1.8亿。随着SARS-CoV-2在人群间的不断传播,其基因组不断发生变异,从SARS-CoV-2首次出现S蛋白D614G突变到被世界卫生组织列为关切的Alpha、Beta、Gamma、Delta突变株以及其他一些受关注的突变株。新变异株的不断出现,引起
镁合金相比其他金属结构材料具有密度小,高比强度、高比弹性模量以及高散热性等优势。但其在室温下机械强度低以及耐磨性能较差,严重限制了镁合金在轻质结构材料领域的发展。目前国内外的研究学者设计并开发一种双连续镁基复合材料,该复合材料中的增强体具有三维连通网络结构,可以有效解决传统增强体所导致的弊端,同时提高镁基复合材料的强度和塑性。本实验选用高强度镁合金ZK61作为基体,制备技术成熟和结构连续的泡沫镍作
束鹿凹陷位于渤海湾盆地冀中坳陷南部,是一个单断箕状的富油气凹陷。据测井资料揭露沙三上亚段(Es3s)是该区成藏潜力最好的目的层。由于该套地层埋深大,储层展布规律不清,开发较困难。本文以经典层序地层学与沉积学研究方法为指导,基于测井、地震、古生物等资料的研究分析,综合总结前人对束鹿凹陷古近系地层的研究成果,针对本次研究主要目的层沙三上亚段(Es3s)进行四级层序的划分及沉积体系的研究,为储层有利相带