论文部分内容阅读
现代空间天文望远镜越来越趋于大型化和空间化的设计方向,要求提高空间望远镜的光接收能力、分辨能力以及探测精度和探测范围。在空间望远镜的设计应用中,衍射光学器件显示出越来越广阔的应用前景和应用价值。本文将衍射光学器件分别与折射光学器件和反射光学器件相结合,利用衍射结构的高折射率模型和改进的光学设计方法,设计了不同的混合光学系统。在文章中研究了使用改进的PWC方法表示的折/衍混合光学系统初级像差理论,并将这一理论进一步应用于反/衍混合光学系统的设计中。镜面上刻蚀衍射光学器件,利于矫正系统像差,减少二级光谱的产生,从而提高成像质量,并实现达到系统大视场的设计要求。该设计方法还可以减少特殊材料或者复杂面形的使用,降低天文等大型光学系统对制作材料的苛刻要求和制作难度,减少研发费用;除此以外,整个光学系统的结构也更加紧凑,并且加强了光学系统对外部环境的适应能力。本文主要进行了以下几方面的研究工作:1.根据光学系统设计中天文望远镜的发展现状,寻找一种新的设计方法,进一步提高天文望远镜的成像质量,并提出在光学系统中添加衍射光学器件的设计构想。探究了衍射光学器件的基本性质,为后续研究工作奠定基础。2.确定了光学系统的设计方案,分析了折/衍混合光学系统设计的高折射率表示方法及其双胶合模型,该设计系统的焦距为4000mm,口径为500mm,要求衍射光学器件的焦距f’为15000mm左右,数值孔径D/f=0.0325。视场角为0.5°、工作波段在0.5μm~0.8μm之间。在折/衍混合光学系统设计方法的基础上研究了反/衍混合光学系统。3.根据反射式望远镜的设计原理与衍射光学器件的光学性质,设计了一个反/衍混合大口径大视场卡塞格林望远镜系统。该系统口径为500mm,系统焦距为2000mm,视场角为3.2°。并且对比分析了在相同焦距,不同视场角要求和相同视场角,不同焦距要求条件下系统的成像性质,影响因素以及改善方式。