线性算子的结构足算子理论学家一直关心的问题,而这方面最重要的问题就是不变子空间问题:可分的Hilbert空间上的每个线性算子是否都有一个非平凡的不变子空间?到现在为止,还没有
模糊逻辑研究的一个显著特点是逻辑学与代数学的相互渗透与融合,强有力的代数方法已经成为模糊逻辑研究的主要工具。反过来模糊逻辑的发展又为代数学开辟了全新的研究领域。模
设[n]={1,2,...,}并赋予自然序, Pn,Singn是[n]上的部分变换半群和奇异变换半群, On, POn是[n]上的保序变换半群和部分保序变换半群.设α∈ Pn,若对任意x∈dom(α),xα≤x,则
自从Kummer给出理想的定义,Dedekind发展了理想理论,素理想的分解问题一直是代数数论的一个重要课题,它在丢番图方程、类域论方面有很广的用途,尤其对解决丢番图方程中一大堆未解
亚纯函数的奇异方向是辐角分布论研究的主要内容之一,而偏差定理是复分析中一类基础估值定理,在很多科学领域中都有广泛的应用。本文研究由亏值定义的Nevanlinna方向推广至亏函
本文将研究两类非线性发展方程组的大时间状态行为,分别为带阻尼的高维Euler方程组和带外加磁场的Vlasov-Poisson-Boltzmann方程组。
早在18世纪,Euler在研究宏观流体的
信息社会正被计算机网络及通信技术的迅猛发展推向一个新的高级阶段,政府、军事、文教、商业、金融等社会生活的各个领域都深受其影响。大量在网络中存储和传输的数据需要保
本文着重探讨Poisson方程在在柱坐标系或球坐标系下的数值求解,使用的数值方法是局部间断有限元(Local Discontinuous Galerkin,简称LDG)方法,此时的Poisson方程系数在r=0处产生
Steklov特征值问题有很强的物理背景及广泛的应用,尤其在流体力学方面,因此越来越多的学者开始关注Steklov特征值问题的有限元方法. Lin和Xie介绍了一种基于一步校正的多水平