面向高速列车横向半主动悬挂系统的回路成形振动控制策略研究

来源 :西南交通大学 | 被引量 : 0次 | 上传用户:squallcl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于乘客对列车的运行速度和运行品质的要求越来越高,因此,列车在高速行驶时必须提高自身的减振性能。结合我国铁路现状,采用半主动悬挂控制系统是目前我国高速列车横向振动抑制的最佳方法。为实现对列车运行品质的优化目的,基于半主动悬挂系统,还应该采取更加有效的的半主动控制策略。本文出于改善列车运行平稳性的目的,通过对列车车辆悬挂系统、减振控制策略理论和整车模型建立方法进行研究,开展了以下几个工作:(1)基于H∞范数能够优化处理多种外界扰动与模型误差,因此针对列车的模型复杂度高和运行环境多变性等不确定性因素,提出采用H∞鲁棒控制策略来设计二系悬挂系统的减振器,以抑制行驶过程中列车车体产生的横向振动,改善运行平稳性。最后,通过联合仿真验证了该策略的有效性。在低干扰不平顺下运行,H∞控制策略相比开环,运行平稳性改善了约23%;在高干扰不平顺下运行,H∞控制策略相比开环,运行平稳性改善了约23%。(2)H∞控制方法在处理非结构不确定性问题方面确实有很好的效果,但是在处理结构不确定性问题方面,该方法还是不太理想。而列车是一个高度复杂的非线性系统,必然存在结构不确定性干扰。为使设计出的控制器能够更好的改善运行平稳性,在H∞控制方法的基础上,进一步提出采用H∞回路成形控制策略来设计减振器。并且该方法使用的互质分解不确定建模,比其他不确定建模更具一般性和普遍性。H∞回路成形控制策略能够在实现对列车系统鲁棒稳定的同时,运行平稳性也得到了很好的提高。最后,通过联合仿真验证了该策略的控制效果比H∞控制策略的控制效果更优。在低干扰不平顺下运行,H∞回路成形控制策略相比开环,运行平稳性改善了约33%;在高干扰不平顺下运行,H∞回路成形控制策略相比开环,运行平稳性改善了约31%。(3)由于H∞回路成形控制方法在设计控制器时,权函数的选取主要依靠工程人员的设计经验,需要反复调整和试凑,非常耗时且具有很大的盲目性,给设计人员增加了很大的任务量。为解决这些弊端的存在,提出一种基于迭代学习改进的回路成形控制策略。该策略利用了迭代学习轨迹跟踪的特性,将H∞回路成形设计中被控对象的模型匹配问题转化为迭代学习中期望回路函数的轨迹跟踪问题,使得设计过程更为简单,设计出的控制器也更符合真实的被控对象。最后,通过联合仿真验证了该策略的控制效果优于H∞回路成形控制策略,优于H∞控制策略。在低干扰不平顺激励下运行时,迭代学习改进的回路成形控制策略相比开环,运行平稳性改善了约36%;在高干扰不平顺激励下运行,改进的回路成形控制策略相比开环,运行平稳性改善了约36.5%。
其他文献
风洞试验是高超声速空气动力学基础科学问题研究和高超声速飞行器研制的关键技术手段。与其他风洞相比,脉冲燃烧风洞具有能量利用率高,能同时保证高超声速推进试验高焓、高动压和发动机工作时间的优点,是我国开展高超声速空气动力学研究的关键地面实验设备。由于,脉冲燃烧风洞启动过程中的高速来流会对实验模型产生巨大的瞬态冲击,加之风洞有效实验时间短暂,仅有300ms,在这样短暂的一段时间内,测量一个飞行器模型所受的
近年来,随着我国科学技术的发展,经济和军事实力的不断提升,各种军工产品、大飞机、精密仪器的研发制造也如火如荼的展开,对于高强度不锈钢的应用需求也随之大幅度的提高。作为目前在我国应用最为广泛的一种高强度不锈钢,15-5PH不锈钢凭借着其优异的硬度、强韧性和耐蚀性,被广泛的应用于飞机部件、阀门部件、齿轮、传动轴等关键零部件的生产制造。在装置运行过程中,这些“近似紧固”配合的零部件间会产生微动磨损,造成
路面低温开裂的产生是由于沥青路面在服役过程中长期处于较低温度下,沥青的抗裂性能损失较为严重,当外界温度产生变化时,沥青胶结料并不能表现出良好的粘弹性性能导致沥青路面出现收缩裂缝。沥青路面的低温抗裂性能主要取决于沥青胶结料的低温拉伸变形性能,但传统的BBR试验对沥青胶结料低温性能的评价过于笼统,1h的低温恒温养护时间并不足以充分考察物理硬化对于其抗裂性能的影响,得到的实验结果会严重高估沥青材料的低温
随着重载铁路运输的发展及复杂服役环境的影响,轮轨损伤日益严重,严重影响列车运行安全与维修养护成本。激光熔覆技术作为一种新型表面处理技术,可对局部损伤钢轨进行修复与再制造,以达到修复轮轨损伤、降低磨损与损伤,延长轮轨服役寿命等目的。因此,开展钢轨试样激光局部修复涂层微观组织与损伤性能研究具有重要的理论意义和工程价值。本文利用TR-3000多模横流CO2激光器对模拟损伤后的钢轨试样表面进行激光局部修复
目前制备银纳米粒子/聚合物纳米纤维的方法主要有两种:一种是对纳米纤维进行表面后处理,让纳米粒子吸附在纤维表面,另一种是把银纳米粒子或前驱体银盐与聚合物基体混合后进行纺丝。纤维上纳米粒子的尺寸、形状、组成、结构和排列决定了复合材料的内在特性,但以上方法制备得到的纳米复合纤维使粒子在纤维中的均匀分布很难实现其功能化,而目前对于在纳米纤维上原位生长具有特定排列结构的纳米银的研究还很少,大多都是通过物理模
我国城市轨道交通建设已经初具规模,并且还在迅速发展,建设体量日益庞大,相关技术渐趋成熟。针对国内地铁线路实际盈利率低和系统能耗较高的问题,地铁再生制动能量回收利用已经被证明是一种行之有效的应对措施。再生制动能量回收利用的技术方案主要包括电阻式、逆变回馈式和储能式三种,储能装置将列车制动过程的电能储存于储能介质中,并在列车牵引时释放储存的能量,对中压电网影响较小,同时储能装置响应时间较快,可以降低牵
单晶硅因其优异的物理和化学特性被广泛用作微机电系统(MEMS)、集成电路(IC)和光电子元器件的结构功能材料。本文借助原子力显微镜(AFM)首先研究了不同温度对疏水单晶硅表面微观摩擦化学材料去除的影响规律,发现温度升高会同时改变界面吸附水膜体积和摩擦化学反应速率,进而影响微观磨损。在此基础上,通过控制环境相对湿度解析了温度单一因素对疏水硅表面摩擦化学材料去除的影响机理,证实了单晶硅摩擦化学磨损随温
螺杆钻具试验台是一种用于检测螺杆钻具实际工作特性的试验系统,承担着对螺杆钻具工作可靠性及使用寿命进行评估的重要任务。随着螺杆钻具输出扭矩、输出功率需求的逐渐增大,对其性能检测系统的要求也在不断提高。回转扭矩加载装置作为螺杆钻具性能检测系统的重要组成部分,其输出特性及工作稳定性直接决定了螺杆钻具性能检测的可行性及准确性;目前,常用的扭矩加载装置在钻具检测过程中,常因部件温升过高而导致扭矩加载失准甚至
山区公路边坡受降雨、地震等作用,边坡浅表面遭受侵蚀风化,随着大量工程建设的开展,边坡滚落石、危岩崩塌以及局部溜塌灾害极易发生,对路上行人及行车构成极大安全隐患。破碎岩质边坡加固包括对边坡整体以及浅表层的加固,论文分析了破碎岩质边坡浅表层灾害特征并给出灾害防治建议;分析常用锚固边坡的计算方法,提出了绿色主动网锚喷生态混凝土防护锚固边坡锚杆设计计算方法,推导了锚固边坡最佳锚杆倾角计算公式;基于数值模拟
传统燃油载客公交车作为公共交通领域的主流交通运输设备,在频繁启停及低速重载等行驶环境下燃油利用率不高且排放严重,难以满足时代背景下的节能及环保要求。此外,由于满载质量极大,车辆仅通过机械制动装置完成制动,制动安全难以保障且制动能量无法回收利用。蓄电池城市公交车主要行驶场景为市区公共道路,运营零污染且可实现能量回收,是解决传统燃油载客车辆能耗及环境污染难题的重要交通设备。然而,由于起步及强加速时牵引