镍铁层状双氢氧化物的拓扑化学制备及其析氧性能研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:selangzhiyan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
层状双金属氢氧化物(Layer Double Hydroxide,LDH)是一种对特定应用设计和制备结构规整可控的二维纳米材料。广泛应用于电、光、磁、机械、材料等领域。具有灵活可调性的二、三价金属阳离子均匀分布在片层内,而为了维持电荷平衡的阴离子处在片层间,具有便捷可交换性。但由于其片薄质轻,纳米片在分散液应用过后难以分离回收。制备条件常需高温高压等苛刻条件,故而无法大量工业生产。因此开发出简易的、可大规模生产的方法用于LDHs纳米片构成的多层次纳米结构的制备具有重要意义。本论文分别通过简易拓扑化学法和原位溶出法制备了两种析氧催化剂,并探索了部分氧化的LDH在碱性电解水中的性能。主要研究工作内容如下:(1)采用简易拓扑化学法,通过结构设计的方法将Fe2+和Ni2+的含量控制在X范围内,将Fe2+暴露于空气中后氧化成Fe3+的方式制备出含有Ni-O-Fe及Fe-O-Fe键合方式的分层级纳米花Ni Fe-LDH析氧催化剂。实验结果表明,随着Fe含量上升Ni含量下降,片层从弯曲变为挺直,层间距为0.73 nm,比表面为25.587 m2/g。有Ni-O-Fe及Fe-O-Fe键合方式的分层级纳米花Ni Fe-LDH析氧催化剂在形貌表征中发现,将其修饰在玻碳电极表面,碱性水环境中测试电化学性能。在电流密度为10 m A/cm2条件下的过电位为240 m V,塔菲尔斜率仅为25 m V/decade。通过计时电流曲线,测试电压为1.56 V vs RHE时长为20时,析氧活性几乎没有变化。电子转移速率为45.35Ω,双电层电容为0.329 m F cm-2。(2)采用原位溶出Ni2+及无氧共沉淀的方法制备Ni Fe-LDH修饰泡沫镍一体化电极。通过无定型Ni O层在弱酸性硫酸亚铁溶液中原位溶出的方法,注射碳酸氢铵促进Ni2+和Fe2+水解一步共沉淀制备水镁石,后暴露于空气中部分氧化Fe2+制备高析氧活性催化剂。实验结果表明,LDH上的Ni源来自于Ni O层的原位溶出,且浸渍时间越长Ni O层溶出的越多。通过电化学性能测试发现,含有Ni-O-Fe及Fe-O-Fe键合方式的Ni Fe-LDH/NF具有优异的析氧性能,在电流密度为10 m A/cm2条件下的过电位为198 m V,塔菲尔斜率为70 m V/decade。通过计时电流曲线对LDH进行电化学稳定性的测试,20小时后电流密度衰减仅为5%。EIS和Cdl表征了LDH的电荷转移速率和电化学活性面积,电荷转移速率仅0.62Ω,双电层电容为1.62 m F cm-2。
其他文献
随着全球经济一体化的发展,集装箱运输早已成为国际贸易的主要运输手段。而随着各国港口群经济规模的不断扩大和发展的同时,也会给海运市场带来各种各样的集装箱运输问题。其中,由于全球区域间贸易发展失衡,港口群和承运公司空箱调运规划不足等因素导致的多数港口空集装箱过度积压,无法按时调运的问题正是目前海运集装箱市场面临的十分普遍且棘手的情况。而空集装箱的调运成本会对承运公司的运营带来相当的成本负担,这也会阻碍
X射线成像技术的出现和发展对人类社会产生了深远的影响,尤其在无损检测和医疗等领域的广泛应用,给人们带来了极大的便利。在面对传统成像技术无法实现弱吸收物质检测的问题时,X射线相衬成像顺势而生,其中,基于泰伯劳干涉仪的相衬成像方法实现了在常规光源上的成像,迈出了走向临床应用的关键一步。对于常规光源的光栅相衬成像技术,由于对光栅制作工艺的苛刻要求,三光栅成像系统的复杂性以及数据采集时间长而导致样品接受的
基于Talbot-Lau效应的光栅成像方法是目前应用最为广泛的X射线光栅成像技术。通过该方法,可得到物体内部的吸收信号、散射信号和相位信号。研究表明,相位信号可以有效的提高软组织探测的对比度,而散射信号可以极大的提高对物体内部颗粒或者空隙结构的探测灵敏度。因此,基于Talbot-Lau效应的X射线光栅成像技术得到了研究人员的广泛关注,并希望将该技术应用到临床检测当中。目前,上述吸收、散射、相位信号
物种的丰富度对森林生态系统的兴衰起着至关重要的作用。生物多样性的消退往往促进生态系统的灭亡,尤其对于物种相对稀少的红树林来说,监测其物种的类型和空间分布,有助于及时采取有效的管理和保护措施。本研究响应新型遥感平台——无人机(Unmanned Ariel Vehicle,UAV)的快速发展,联系现阶段红树林物种分类研究中存在的问题(同一物种的红树林通常形成卫星遥感影像无法识别的窄条或小斑块;研究专注
全变分(total variation,TV)模型在图像的每一点上都仅沿着垂直于图像梯度的方向扩散,即是沿着边缘方向扩散,而在梯度方向是不扩散的,从而解决了过度平滑的问题,也有效地保护了图像边缘的信息,因此该模型能较好地保留图像的边缘细节。但对于图像的平坦区域,它的边缘方向实际上是不明显甚至是不存在的,此时沿着图像边缘方向扩散就会导致平坦区域的去噪能力不足,容易把平坦区域的噪声误当成图像边缘处理,
时下,传统能源的过度采伐与污染化滥用正以可见化的形式影响着全球生态与环境。发展新型的能源转化技术已是当下意义深远的任务。其中,燃料电池阴极端缓慢动力学氧还原反应(ORR),以及CO在催化剂表面的强吸附毒化阻碍着整体工作效率的提高,因此设计新型高效,并具有长时间抗CO毒化性的电催化剂成为了热门的研究课题。目前商用氧还原催化剂为Pt/C颗粒,但纯铂颗粒在实际使用过程中面临两个无法避免的短板。一是其在使
作为燃料电池金属双极板表面改性镀层,要求同时满足低的接触电阻、高的耐腐蚀性能、高的膜基(不锈钢)结合力、一定的耐磨强度等要求。但目前所用的镀层性能无法同时满足这些要求。导电陶瓷MAX相因其独特的晶体结构,从而兼具了金属的优良导电、导热性能以及陶瓷材料的耐高温氧化和抗腐蚀性能,我们认为会是一种理想的金属双极板表面保护薄膜材料。常规的MAX相薄膜的研究重心在于薄膜的成相工艺、相结构等,直接针对燃料电池
目的:瞬时外向钾电流(Ito)在维持细胞膜电位和调节细胞兴奋性中起重要作用,Ito的异常是众多心肌兴奋性相关疾病的电生理基础。Kv4.2是啮齿类动物心肌Ito通道的核心α亚基,KChIP2是Kv4.2的关键调节亚基。目前已知KChIP2和通道在脂筏中的定位与交感兴奋所引起的Kv4.2的磷酸化均能影响Kv4.2在细胞膜上的稳定性,三者密切相关,但相互关联的分子机制却不明确,本课题旨在研究这其中作用分
在超精密加工领域,影响零件精度的重要因素是机床的主轴回转误差,研究超精密机床的主轴回转误差不仅可以用于评估主轴的回转特性、检测机床主轴的运行状态,并且可以预估机床在加工零件时的误差来源,还可以为加工误差的补偿提供数据来源。而慢刀伺服加工技术由于其具有工作行程大、可加工大型连续的复杂零件、高效率、高精度等优点,被广泛应用于自由曲面的加工。本文主要以美国摩尔450超精密车床为主,针对该车床的主轴回转误
原发性肝癌是我国发病率高的、死亡率高、危害极大的恶性肿瘤之一,严重威胁我国人民健康和生命。目前肝癌临床上常用的治疗方法包括手术、介入、化疗及放疗等,但在应用过程中也发现很多不足,如复发率高、化疗药物不敏感及耐药、患者术后生活质量低等。现代医学研究发现中医中药在化疗药物减毒增敏及提高患者生活质量等方面均发挥出重要作用。肿瘤细胞糖代谢重编程是指肿瘤细胞即便在氧气充足的情况下也依靠糖酵解供能,同时产生大