【摘 要】
:
水资源和能源是维持城市运转必不可少的两大关键要素。在社会经济迅猛发展、人口不断攀升、全球气候变化的背景下,对于两种资源的需求日益增加,水资源和能源安全受到学术界和政府的广泛关注。为了缓解水-能关系压力,世界银行发起了题为“量化水和能源关系的权衡”的全球倡议;2014年,联合国世界水资源评估计划署特地将“水与能源”作为世界水日的主题。有研究表明,到2030年,全球供水短缺率将达到40%,而全球能源需
论文部分内容阅读
水资源和能源是维持城市运转必不可少的两大关键要素。在社会经济迅猛发展、人口不断攀升、全球气候变化的背景下,对于两种资源的需求日益增加,水资源和能源安全受到学术界和政府的广泛关注。为了缓解水-能关系压力,世界银行发起了题为“量化水和能源关系的权衡”的全球倡议;2014年,联合国世界水资源评估计划署特地将“水与能源”作为世界水日的主题。有研究表明,到2030年,全球供水短缺率将达到40%,而全球能源需求将比2010年增长36%,这将加剧水资源、能源供需之间的矛盾。在城市经济活动中水的使用和能源的消耗是高度交织在一起的,例如有研究者发现,我国整个社会水循环过程的能源消耗量占到用电总量的19.45%。然而,过去对水资源和能源的管理以及政策制定往往是分开进行的,忽视了二者之间的密切联系。深圳市是我国一个典型的资源约束型特大城市,高速的经济发展使得水资源和能源挑战不断深化。对水-能源关系的深入理解对于实现可持续资源管理至关重要。本文首先梳理了深圳市水、能源现状,运用偏最小二乘法提取出需求增长的驱动因素,然后构建了水-能源系统动力学模型,并设置了基准情景、约束情景和协同管理三种不同的政策情景进行仿真分析,最后引入Copula函数,借助Matlab编程进行了水-能源系统的风险分析。论文的主要成果有以下几个方面:(1)深圳市的水、能源供应高度依赖于境外引入,因此日益增长的需求加剧了供需之间的矛盾,体现了典型的水-能关系。人口规模、经济发展水平、供水与供能结构、以及使用效率对于需求的增长有着较大的拉动作用。(2)研究期内深圳市能源需求预测范围为[35.16,59.97]百万吨,用水需求预测范围为[16.41,35.42]亿m3。以水-能关系为导向的协同管理模式能够最大程度的缓解深圳市水-能系统压力,达到深圳市设定的总量控制目标,因此倡导水资源系统部门和能源系统部门要加强协作,制定水与能源协同管理政策。(3)Frank Copula被用于构造水、能源可利用量的联合分布函数,分别用核密度估计法得到水资源和能源边际分布,结合需求预测值得到系统的风险概率分布组合。例如,在水-能源系统综合风险为0.826的水平下,水资源系统风险为0.92,能源系统风险为0.88,对应地,用水需求应当控制在34.03亿m3,能源消耗需要控制在57.33百万吨。通过本研究,以期相关结论能为政策制定和资源管理提供参考依据。
其他文献
太赫兹波(THz)是频率介于0.110 THz范围内的电磁波,其在光谱中介于微波与红外之间,具有许多特殊性质,在成像、无线通讯等方面受到广泛关注。但目前太赫兹频段的小型化调控器件还是较为缺乏,这极大地影响了对太赫兹波的进一步探索。近年来,由一系列亚波长人工结构组成的超表面,由于其对电磁波波前的局部优越调控能力,引起了光学和红外领域的广泛研究。这一优势也可以引入到太赫兹频域范围内去解决空间调制器件不
二维硒化铟因其优良特性而在光电领域大放异彩,如作为阵列结构器件、柔性电极和宽带光谱高速响应器等方面都能体现其价值。但是此类研究主要集中在可见光和近红外光谱范围,其非线性特性及中红外波段下的响应却鲜被研究。本文旨在研究二维硒化铟在红外波段的光学特性,分别建立了Z扫描系统和光谱成像系统,研究了该样品的非线性特性和光谱成像特点。研究结果表明二维硒化铟在近红外波段具有非线性效应,在宽带中红外波段内具有很强
自从石墨烯被发现,因为其优异的表现引起了越来越多科学家的关注,从而衍生出了许多类石墨烯结构的新型二维材料。一些二维纳米材料在物理学、化学领域具有优异的表现。本文所用的二维半导体纳米材料硫化铋(Bi2S3)就有非常好的物理学表现,对不同波长的光有很好的光学响应,可以应用于多种光电器件的设计,比如全光开关,全光信息传递装置,全光二极管,热电制冷器、电气开关等等。然而,对硫化铋的非线性效应报道非常少,在
表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)是一种高灵敏度的表面检测技术,入射光和待检测分子发生相互作用后,根据散射光的拉曼光谱可以准确,快速的对分子的结构进行特一性检测。随着拉曼光谱的研究发展,拉曼光谱更多的被应用到实际生活中,癌症检测,药物分析,环境污染,毒品检测以及爆炸物等,范围很广,具有很大程度上的意义价值,因此一直受到人们的青睐。表面增
石墨烯具有优异的电学、光学、机械特性,基于石墨烯的光电探测器得到迅速的发展。然而,原子级厚度的石墨烯吸光度低且缺乏增益机制,这限制了石墨烯基光电探测器的性能。层状材料量子点具有良好的光吸收,能带隙可调等优点。构建层状材料量子点/石墨烯复合结构不仅可以提高石墨烯的吸光度,而且具有良好的电荷分离能力,从而可提高石墨烯光电探测器的响应度。探头超声剥离法是一种有效制备层状材料量子点的方法,该方法的关键在于
三维碳纳米材料(3D Carbon Nanomaterials,3D CNMs)由于其优异的电学光学、磁学性能而受到人们的关注。三维碳纳米材料通常是由多种碳纳米材料组合在一起形成的系统,其复杂的组分给材料带来了大量的边界和表面缺陷,这给三维碳纳米材料带来了独特的应用优势。但是关于三维碳纳米材料的研究多集中在电学领域,尤其是上转换发光的三维碳纳米材料鲜有报道。碳点(Carbon Dots,CDs)作
二维层状材料相对于其体材料来说具有许多独特的物理特性被广泛应于光电子器件和柔性电子器件研究中。当材料减小到纳米级厚度时,材料的比表面积增大,由于量子限制效应,二维材料对光的吸收调控能力产生变化。此外,施加外部电压、应力或改变材料的厚度、缺陷态等可以调控二维材料的光学带隙,使得二维材料在宽波段可以产生很强的光调制作用。通常来说,随着激发光强度的不同,材料对光的吸收可以分为线性吸收和非线性吸收。线性吸
淡水资源短缺已经成为一个全球性问题。而太阳能驱动的界面海水蒸发是新兴的最有前途的技术之一,通过对海水进行加热、蒸馏、净化等处理来获得更高品质的生活用水。在这项工作中,我们首次将无水乙醇脱水处理后的胡萝卜碳化,得到的生物炭材料作为海水蒸发器,这种材料作为一种集光热转换、海水蒸发、自漂浮等功能为一体的多合一光热材料,可实现高效的太阳能海水蒸发。胡萝卜作为一种天然的植物,它的体内含有大量可以运输水分和营
稀土掺杂上转换发光材料具有很多优异的性能,比如发光波段可以从紫外区域到红外区域,发光强度高,有很好的光稳定性,并且毒性低。这些优异的性能使其在生物医学、激光应用、3D打印、防伪、温度传感等各个领域都有着广阔的应用前景。目前研究以Na YF4纳米晶为基质材料的稀土掺杂上转换发光材料的应用大多数在蓝光,绿光这一区域范围,在紫外波段的应用少有报道,这限制了它的研究与应用。为了了解其在紫外波段的发光性能,
陶瓷材料作为三大基础材料之一,以优良的理化特性在工业界被广泛应用。但由于传统制备工艺的限制,可应用于工业上的陶瓷产品往往仅能被制作成简单的三维结构。同时,随着科技的发展,特种陶瓷、尤其是适用于高精尖领域的高性能陶瓷,受到社会各界的广泛关注,需求量日渐上涨,发挥着越来越重要的作用。复杂三维结构精密陶瓷是微机电系统、微纳光学、微纳传感等诸多应用器件的基础,其一体化高精度制造是当前学术界研究热点也是产业