【摘 要】
:
近年来,螺杆泵采油技术在各大油田应用规模迅速扩大,橡胶定子和金属转子组成的螺杆泵是螺杆泵采油系统的核心部件,其中定子橡胶尤为重要,其产生的磨损会对螺杆泵的运转时限以及运转效率造成较大破坏,然而对于定子橡胶失效形式、失效原因及其影响因素的研究与探讨并不十分广泛,没有得到应有的重视,对于螺杆泵定子橡胶的实际应用存在一定限制作用,对此,论文从一个独立的角度出发,主要研究Na+这种常见于原油中的化学成分在
论文部分内容阅读
近年来,螺杆泵采油技术在各大油田应用规模迅速扩大,橡胶定子和金属转子组成的螺杆泵是螺杆泵采油系统的核心部件,其中定子橡胶尤为重要,其产生的磨损会对螺杆泵的运转时限以及运转效率造成较大破坏,然而对于定子橡胶失效形式、失效原因及其影响因素的研究与探讨并不十分广泛,没有得到应有的重视,对于螺杆泵定子橡胶的实际应用存在一定限制作用,对此,论文从一个独立的角度出发,主要研究Na+这种常见于原油中的化学成分在螺杆泵运行过程中会对定子橡胶产生何种影响,并分析其影响原因、影响因素与作用机理。为了更好的说明原油中钠离子对于橡胶的影响,在实验室内进行了模拟实验,试验共分为四组进行:第一组为摩擦环境处于水润滑的磨损研究,第二组为摩擦环境处于NaCl溶液的磨损研究,第三组为摩擦环境处于Na2SO4溶液的磨损研究,第4组是水、NaCl与Na2SO4溶液中溶胀试验,采用MVP-600环块试验机对NBR与FKM这两种螺杆泵定子常用橡胶进行试验,进行上述研究后,以体视显微镜作为观测工具,了解实验的相关情况,并采取带能谱的方式完成对其元素的研究,了解橡胶在磨损后其表面的元素扩散情况,为对于橡胶磨损机理的分析提供理论依据。在实验结果产出后,展开深入分析以及论述从而推导出结论,简要总结如下:1)NaCl溶液可以使两种橡胶的磨损性能降低,磨损量增加,减少其使用寿命,同时,FKM在水或NaCl溶液中的磨损性能优于NBR;2)NaCl溶液中影响NBR与FKM磨损性能的成分主要是Na+;3)随着Na+浓度的提高,NBR与FKM两种橡胶的耐磨损性能逐渐降低;4)溶胀会严重加剧两种橡胶的磨损。
其他文献
Ni2MnGa合金是一类新型的铁磁性形状记忆合金,具有多重优异的磁控功能,在磁驱动器件、磁传感器及磁制冷等领域具有巨大的潜在应用价值。研究表明,sp元素、3d元素和间隙原子均对Ni2MnGa合金磁性能、结构相变及力学性能具有重要影响。目前为止,还未有s元素掺杂Ni2MnGa合金的相关研究。与此同时,不同轨道元素掺杂Ni2MnGa合金的物理机制尚不清楚,这阻碍了 Ni2MnGa合金性能优化的步伐。因
近年来,人们对汽车结构减重和安全性问题的逐渐重视,而具有良好综合力学性能的中锰TRIP钢是汽车结构的理想备选材料。该钢种在动态与准静态条件下的变形行为有很大的区别,体现在材料变形的局部性、绝热温升、强烈的冲击波效应和断裂方式的改变。但是到目前为止,对中锰TRIP汽车用钢的研究大多为准静态下的变形行为,即使进行动态变形行为的研究,也是简单地通过比较变形前和拉断后的组织变化来实现的,而对动态变形过程中
镁合金板材的生产流程包括板材的卷曲、开卷以及矫平等工序,镁板在卷曲、开卷和矫平过程中都涉及到弯曲变形。在目前的研究中,对镁合金薄板材的弯曲性能的研究较多,而对中厚板材弯曲力学性能及变形机理的研究甚少。因此,本文对AZ31、AZ80轧制中厚板材以及AZ31挤压中厚板材进行了弯曲性能及变形机理的研究。首先对AZ31、AZ80轧制中厚板以及AZ31挤压中厚板沿厚度方向的初始微观组织和宏观织构进行了对比分
当今世界,环境污染问题日趋紧张,节能减排越来越受到人们的重视。而汽车轻量化不仅对汽车工业具有重要的意义,甚至对于整个制造业的可持续发展都具有着重要意义。在乘用车安全性能保持不变的情况下,尽可能的减轻车身重量,从而减少汽车燃料消耗是未来汽车工业的发展方向。Q&P钢作为第三代高强度钢中的代表,结合了马氏体钢、DP钢和TRIP钢的优点,相较于第一代和第二代高强度钢,在保证高强度的同时,还有着较高的延伸率
近年来,随着我国高端重型装备制造业的快速发展,对高品质、大规格钢铁产品需求大幅增加,推动了大断面宽厚板坯连铸坯生产技术的发展,连铸坯断面大型化已成为高效连铸生产技术发展的重要趋势之一。然而,随着板坯断面尺寸不断的增宽加厚,其中连铸机扇形段的可靠性与稳定性问题愈加凸显,严重制约了高品质连铸母坯及其轧材高效、稳定制备。鉴于此,本文以国内某钢厂主力宽厚板坯连铸机扇形段为研究对象,依托现场实际应用数据,采
颗粒增强铁基复合材料具有高的强度、硬度和刚度,耐高温、抗冲击和耐磨性能较好,制备成本低,具有很高的应用价值。然而铁的高熔点决定了颗粒增强铁基复合材料制备的过程必须是在高温环境下,这会严重破坏增强颗粒与基体的界面结合状态,难以制备高性能的复合材料。本课题组自主研发了双段式电流直加热动态热压烧结工艺用于制备铁基复合材料,该工艺利用电流产生的焦耳效应加热试样,通过电路控制系统控制烧结温度和烧结时间,可以
TC4(Ti-6Al-4V)钛合金具有良好的综合力学性能和耐腐蚀性能,同时还具有优异的超塑性能,被广泛地应用于航空航天、生物医疗、海洋船舶等领域。由于TC4钛合金变形抗力大,导热性较差,常规加工方法较为困难,增材制造技术可以有效解决这一问题,但增材制造组织是快速凝固得到的,不利于构件取得优异的综合力学性能。通过增材制造与超塑成形技术的结合,可以实现在成形的过程中改善组织状态,研究增材制造钛合金的超
在日本,随着环保意识的日益提高,作为可再生资源,拓展钢渣循环利用新途径对改善钢渣供需关系具有重要的影响;在中国,目前钢渣的利用率仅为22%,积极开发钢渣利用技术对促进钢渣有效利用至关重要。由于当前许多沿海防波堤岸的建设中正在不断加大对钢渣水泥的使用,从环境安全角度出发,有必要对钢渣在水中的元素浸出特性开展基础性研究。本论文以日本卜ピー工業株式会社(Topy Industries,Limited)的
中锰钢通过两相区逆相变退火工艺可获得回火马氏体+细小残余奥氏体的双相组织,因TRIP效应实现优异的强度和韧塑性等匹配,在海工、汽车等领域具有广阔的应用前景。目前,中锰钢主要采用熔焊连接,然而传统熔化焊的峰值温度远高于熔点,同时钢中较高的锰含量,使得焊缝容易出现Mn蒸发、偏析、气孔等问题,最终导致接头性能恶化。搅拌摩擦焊(FSW)是一种新型固态焊接工艺,峰值温度远低于熔焊。本文采用FSW对中锰钢进行
本课题选用高纯度Ni、Mn、Ti金属单质为原料,采用定向凝固技术制备了强织构的Ni50Mn50-xTix(x=17~20)全3d金属元素Heusler多晶合金。通过利用差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电子万能试验机以及磁学测量系统等检测设备对材料的马氏体相变行为、晶体结构、微观组织、磁性能和弹热性能进行了深入的研究,并基于第一性原理计算对合金的