【摘 要】
:
图像描述顾名思义,即给定一张图片,算法自动生成一段描述图像内容的文本。该任务对人来说很容易,但对于机器却非常有挑战性。这需要同时用到计算机视觉技术和自然语言处理技术,来实现从图像内容理解到文本生成的转化过程。图像描述应用潜力巨大、在很多方面都很有应用价值,适用于人机交互、图片索引、智能监控、视频标注、视觉辅助等领域。近年来,Encoder-Decoder框架在基于神经网络的图像描述任务中吸引了越来
【基金项目】
:
国家自然科学基金计划项目(61876037);
论文部分内容阅读
图像描述顾名思义,即给定一张图片,算法自动生成一段描述图像内容的文本。该任务对人来说很容易,但对于机器却非常有挑战性。这需要同时用到计算机视觉技术和自然语言处理技术,来实现从图像内容理解到文本生成的转化过程。图像描述应用潜力巨大、在很多方面都很有应用价值,适用于人机交互、图片索引、智能监控、视频标注、视觉辅助等领域。近年来,Encoder-Decoder框架在基于神经网络的图像描述任务中吸引了越来越多的研究者的注意,相关研究取得了巨大的进步。最近,一些研究报道称基于自注意力机制的模型在图像描述任务中取得了当前最佳的效果。相比于传统的RNN模型,基于自注意力的模型通过注意力机制来解决时间依赖问题,故能进行高效的并行计算,并且在语境建模上达到了更好的性能。然而,自注意力需要的计算量与序列长度的二次方成正比。本文主要在Encoder-Decode框架的基础上,结合深度神经网络的相关技术,从改进解码器的性能和训练效率出发,对图像描述算法进行了研究和探索,主要工作和贡献如下:1.建立了基于轻量卷积方法和动态卷积方法的图像描述模型。我们分别将轻量卷积和动态卷积作为自注意力的替代结构应用到图像描述任务中,使得计算量与序列长度成正比。本文第一次将轻量卷积和动态卷积用于图像描述任务中,我们建立的模型相较于基于自注意力的模型计算量更少,训练效率更高,并且其性能也获得了一定的提升。2.在模型中引入了自适应注意力机制,指导模型在不同时刻提取不同位置的图像特征,自适应门的引入也使得模型能根据当前时刻解码器的状态来决定是使用视觉信息,还是使用已经生成的文本的语义信息来预测当前单词。此外,我们还将作为自适应注意力模块输入的图像空间特征融合其对应的二维位置信息来进一步强化模型的性能。3.所建立的模型在MSCOCO数据集上进行了相关的实验,并与基于自注意力的基准模型以及基于CNN的基准模型做了对比,验证了本文模型的有效性。结果表明,该模型较基于CNN的模型具有更优的性能,与当前热门的基于自注意力机制的模型相比仍然很有竞争力。
其他文献
零样本学习作为机器学习中的一项新的挑战,越来越多的研究者将注意力放在了这一项新的任务上。零样本学习指的是利用类别辅助信息,在没有对应类别训练样本的情况下,对该类别的样本做出正确预测的任务。零样本学习可以根据测试集中样本的类别分为传统零样本学习和广义零样本学习,也可以根据使用数据的不同,分为类别归纳示例归纳式、类别直推示例归纳式、类别直推示例直推式三种。在先前类别归纳示例归纳式的零样本学习研究中,对
图像内容理解是计算机视觉领域重要的研究目标。分割,尤以细粒度图像分割,是实现图像内容理解的一个重要途径。全景分割,作为细粒度图像分割任务中的一种,可以帮助计算机更全面的理解图像中每一类物体的位置、形状等信息,它的有效解决,将有助于自动驾驶、行为识别等多个问题的发展。本文主要着眼于神经网络建模、针对全景分割问题的计算机视觉方法研究。更具体来说,是通过对数字图像进行像素点级别的分类实现对图像中物体的识
随着社会与现代科技的发展,人们将面临着越来越多的数据,传统的机器学习方法计算开销大,通常难以应用到大规模数据的学习问题上。而当面对大规模学习问题时,在线学习往往是一种易于应用且高效的方法。现有的在线学习方法大致可分为线性模型和核化模型两类。其中,线性模型的计算开销小,所以计算速度快。但当面临复杂数据时,这类模型在精度上很可能表现不佳。后来有研究者引入核技巧(kernel trick),提出了核化模
多标记分类研究中,一个示例(由属性/特征向量表示)会关联多个类别标记,利用多标记数据可以构造一个从示例映射到类别标记集合的分类模型,这样的学习框架适用于多义性对象建模。传统的多标记分类任务中,通常假设实例对应的标记集合是完全准确的。然而,在某些复杂场景下(如网络图片标注),与示例关联的候选标记集合往往含有噪声,需要对含噪多标记分类问题进行研究。本文针对多标记分类中噪声标记问题与多标记分类中特征构造
两阶段学习算法是将一些传统机器学习算法由原始的一步解决问题的过程拆分为两个不同的学习阶段,而问题求解的本质保持不变的学习框架。最初,两阶段学习算法的引入是用来解决核Fisher判别分析(Kernel Fisher Discriminant Analysis,KFDA)在处理高维小样本数据时所面临的病态问题。具体地,两阶段核Fisher判别分析(Two-phase Kernel Fisher Dis
在标准偏标记学习框架下,每个对象由单个特征向量进行刻画,同时与多个候选标记相关联,其中仅有一个未知的真实标记。另一方面,在真实世界问题中对象的性质往往更为复杂,每个对象拥有多源的特征表示并且未知的真实标记也并非唯一。一般而言,有效的特征表示能显著提升学习系统的泛化能力,而偏标记特征表示任务由于标记的真实信息未知而具有较高挑战性。本文针对偏标记场景下的特征表示及融合展开研究,主要包括以下两方面工作:
医学图像配准是医学图像处理研究领域的一个重要任务和技术难点,对于图像融合、检测肿瘤生长等临床工作有重要意义。图像配准旨在寻找将一幅图像映射到另一幅图像的空间变换。传统的配准方法迭代优化每一对图像的目标函数求解空间变换,存在配准时间长、计算量大的问题。近年来,随着深度学习在医学图像研究领域的广泛应用,基于深度学习的图像配准成为极具前景的研究方向。基于深度学习的有监督配准方法虽然在配准速度与精度方面都
随着网络中数据信息的快速增长,知识库的规模也与日俱增。由于知识库中数据量的庞大规模以及复杂结构的限制,普通用户很难快速有效地获取需要的信息。因此,基于知识库的问答,运用自然语言处理技术,对于用户提出的自然语言问题,自动利用知识库存储的三元组信息(即知识)进行解答,显得尤为迫切和重要。目前,基于知识库的问答研究引起了国内外学者的广泛关注。根据回答问题所需要的三元组的数量可以将知识库问答分为两类:单关
多模态知识表示学习旨在从多模态数据中学习到关于其中数据、信息或知识的低维稠密向量形式的特征表示,作为近年来人工智能研究的热点问题之一,在多模态语义检索、视觉问答(VQA)、多模态情感分析等智能场景中具有重要应用价值。虽然多模态数据能为许多任务提供比单模态数据更多和更有用的特征信息,但如何从多模态数据获得有效的表示学习结果一直是多模态知识表示学习研究的核心问题。本文首先提出了一种基于门控层级融合的多
知识图谱是人类知识的一种显式表示方式,作为近年来人工智能研究的热点领域之一,已被广泛应用于语义搜索、人机互动、辅助决策等智能应用场景。然而,在各种知识图谱驱动的应用中,往往需要借助知识图谱嵌入技术将知识图谱中的元素表示为低维稠密的向量形式,弥补显示知识表示的不足,以满足大量推理、分析和预测的需要。虽然知识图谱嵌入已有很多研究工作,但仍存在知识表示不准确和语义不够丰富的明显不足:(1)基于翻译思想或