面向标记噪声与特征构造的多标记分类研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:woyingla
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多标记分类研究中,一个示例(由属性/特征向量表示)会关联多个类别标记,利用多标记数据可以构造一个从示例映射到类别标记集合的分类模型,这样的学习框架适用于多义性对象建模。传统的多标记分类任务中,通常假设实例对应的标记集合是完全准确的。然而,在某些复杂场景下(如网络图片标注),与示例关联的候选标记集合往往含有噪声,需要对含噪多标记分类问题进行研究。本文针对多标记分类中噪声标记问题与多标记分类中特征构造问题进行研究,主要做了下述两方面的工作:针对多标记分类中噪声标记问题,提出了一种面向标记噪声的两阶段置信标记发现多标记分类算法Particle,该方法通过从含噪的候选标记集合中筛选置信标记用于后续模型的构建,以此降低噪声标记的负面影响。在第一阶段,通过标记传播技术估计各示例候选标记的标记置信度;在第二阶段,利用高置信概率的候选标记,通过虚拟标记分割或MAP推理进行标记配对排序,构造相应的多标记分类器。针对多标记分类中特征构造问题,基于多标记类属特征思想,将单标记类属特征模式扩展为双标记模式,提出了一种简单高效的二阶类属特征构造方法BiLAS。BiLAS首先通过启发式的样本选择和特征嵌入方法,对每个标记对筛选原型向量并基于特征嵌入构造二阶类属特征;此后,基于构造的二阶类属特征训练二类分类器集成实现未见示例的多标记分类。本文一共分为四个章节,第一章介绍了多标记分类的研究背景和待解决的问题;第二章介绍了面向标记噪声的多标记分类方法Particle;第三章介绍了面向特征构造的多标记分类方法BiLAS。第四章对全文的工作进行总结。
其他文献
随着社会发展,人们学习与工作压力增大,脊柱畸形发病率也日趋升高,且呈现发病低龄化趋势。脊柱畸形会对人类的生理和心理造成严重伤害,对处于身心发育期的青少年危害尤为严重,因此,推广脊柱畸形检测与筛查具有极大社会价值。当前的检测手段有两大类:放射性与非放射性脊柱形态检测。放射性脊柱形态检测精确度较高,是目前医学上常用的检测手段,但是会对患者造成过量辐射,增加患者罹患癌症等相关疾病的概率。针对脊柱畸形多发
类人机器人在结构、感知、动作等方面与人类具有相似性,其研究涉及机械、控制、计算机等多个学术领域,是一个值得深入研究的方向。RoboCup是以击败人类足球世界杯冠军为目的机器人世界杯,该项目推动了机器人技术,特别是类人机器人技术的发展。本文基于SEU_Uni Robot类人足球机器人,优化设计并实现应用于RoboCup类人KidSize组别的上层控制系统。本文在提出上层控制系统总体方案的基础上,详细
近年来,因机器人在工业制造、深海探测以及航天航空等领域内发挥着重要的作用,其控制问题亦成为学术界的研究热点之一。本文将非奇异终端滑模、自适应技术以及有限时间稳定性理论相结合,研究了n关节刚性机械臂系统的轨迹跟踪控制问题。本文主要工作概括如下:(1)针对包含内部不确定和外部干扰的n关节刚性机械臂系统,基于非奇异终端滑模实现对参考轨迹的跟踪。首先,提出了一种包含反正切函数的新型非奇异终端滑模(ATNT
移动机器人作为新世纪智能化关键载体,已逐渐在工业、服务业、农业和航天等领域得到了广泛的运用。随着任务需求以及环境多样性的增加,移动机器人的研究不断面临新的挑战,尤其是其自动化和信息化。本文基于MT-R型移动机器人平台研究移动机器人的导航与抓取问题,具体内容如下:(1)基于单目视觉研究机器人的目标识别与测距算法。依据小孔成像模型利用张氏标定法对摄像机标定,获取相机内参。根据特定目标的颜色和形状特征,
冷轧管性能优越、精度高,广泛应用于国民经济许多领域。新型冷轧管机采用三个直流电机实现轧辊和回转、送进驱动,其性能和运行状态直接决定了冷轧管的质量。已有的冷轧管机现场监控器通过采集驱动电机的电压电流信号实现了对生产过程中冷轧管机运行状态的监控,并能够连接上位机实现监控数据存贮和管理。随着新型冷轧管机的技术升级和普及应用,轧管厂和制造商在设备安装调试、使用维护、故障维修、质量跟踪等方面都面临挑战,需要
类人机器人是智能机器人领域的研究热点,受到机器人学界的广泛关注。本课题针对Robo Cup类人足球机器人Kid Size项目,在东南大学SEU_Uni Robot团队历年研究成果基础上,优化设计和实现完整的类人机器人运动控制系统,以提升机器人运动性能。本文研究内容主要包括:搭建机器人的软硬件系统,采用两层控制器的控制架构,完成舵机执行器、传感器的选型,使用MCU作为机器人下层控制器,完成定时任务和
在传统多标记学习中,每个对象由单个特征向量构成的示例表示,学习系统的目标是构建由示例空间至标记空间幂空间的映射。一般而言,对象的特征表示对于学习系统的泛化性能有着重要影响。如何突破传统的单特征向量表示,提升多标记学习系统泛化性能,值得进一步深入研究。本文围绕多标记特征表示开展研究,主要做了如下两方面的工作:一方面,“类属特征(label-specific features)”表示通过为每个标记构造
零样本学习作为机器学习中的一项新的挑战,越来越多的研究者将注意力放在了这一项新的任务上。零样本学习指的是利用类别辅助信息,在没有对应类别训练样本的情况下,对该类别的样本做出正确预测的任务。零样本学习可以根据测试集中样本的类别分为传统零样本学习和广义零样本学习,也可以根据使用数据的不同,分为类别归纳示例归纳式、类别直推示例归纳式、类别直推示例直推式三种。在先前类别归纳示例归纳式的零样本学习研究中,对
图像内容理解是计算机视觉领域重要的研究目标。分割,尤以细粒度图像分割,是实现图像内容理解的一个重要途径。全景分割,作为细粒度图像分割任务中的一种,可以帮助计算机更全面的理解图像中每一类物体的位置、形状等信息,它的有效解决,将有助于自动驾驶、行为识别等多个问题的发展。本文主要着眼于神经网络建模、针对全景分割问题的计算机视觉方法研究。更具体来说,是通过对数字图像进行像素点级别的分类实现对图像中物体的识
随着社会与现代科技的发展,人们将面临着越来越多的数据,传统的机器学习方法计算开销大,通常难以应用到大规模数据的学习问题上。而当面对大规模学习问题时,在线学习往往是一种易于应用且高效的方法。现有的在线学习方法大致可分为线性模型和核化模型两类。其中,线性模型的计算开销小,所以计算速度快。但当面临复杂数据时,这类模型在精度上很可能表现不佳。后来有研究者引入核技巧(kernel trick),提出了核化模