论文部分内容阅读
为充分利用高强钢在强度上的优势,采用高强钢制作结构的主要承重构件,可以有效提高结构承载能力并减轻结构自重、节约用钢量。但是,高强钢一般无法满足《建筑抗震设计规范》(GB50011-2010)对钢材屈强比不得大于0.85及伸长率不得小于20%的强制性条文要求。因此,当高强钢材应用于抗震设防区的钢结构时,《高强钢结构设计规程》(征求意见稿)建议采用高强钢制作的构件不宜进入屈服,这对采用了高强钢的结构体系提出了较高的抗震性能要求。为解决上述问题,本文提出一种新型高性能钢框架-支撑结构体系(HPSBF),该结构体系的框架柱采用高强钢制作,框架梁采用普通钢制作,同时引入耗能减震机制,将钢制耗能器结合支撑合理地布置到结构中,从而形成了钢制耗能器-普通钢框架梁-高强钢框架柱三重设防的抗震工作机制。在地震作用下,钢制耗能器率先进入屈服耗能,形成结构体系抗震设防的第一道防线;普通钢框架梁的屈服耗能在钢制耗能器之后,成为结构体系抗震设防的第二道防线;高强钢框架柱作为结构体系抗震设防的第三道防线,且不得进入屈服。基于上述工作机制,本文对高性能钢框架-支撑结构体系开展了抗震性能化设计研究,并对该结构体系中的构件、结构、设计方法等方面的若干关键问题进行了专题研究,主要研究内容及成果如下:1、针对传统的钢制耗能器中存在的问题,提出了一种改进的剪切型耗能器、一种改进的弯曲型耗能器和一种改进的剪切-弯曲混合型耗能器,通过理论分析研究其基本力学性能,并通过拟静力往复加载试验验证其滞回耗能性能。研究结果表明,改进的剪切型耗能器通过采用接触式加劲肋,可以有效避免加劲肋焊缝对腹板产生的应力集中及焊接残余应力等不利影响,提升耗能器的滞回耗能和低周疲劳性能;改进的弯曲型耗能器通过合理的构造改进,不仅方便了制造及组装,而且可以有效避免发生刚度突增的不利情况;改进的剪切-弯曲混合型耗能器通过将弯曲耗能板与剪切耗能板以适当的方式组合形成联合工作机制,有效提升了耗能器的整体滞回耗能性能。2、针对双线性滞回模型及传统Bouc-Wen滞回模型所存在的不足,对一种正则化Bouc-Wen滞回模型进行了研究,其具有归一化的滞回变量且不存在冗余参数。通过理论推导揭示了其模型参数与钢制耗能器滞回力学特性之间的关系,并进一步提出了相应的参数拟合方法,为采用正则化Bouc-Wen模型模拟钢制耗能器的滞回力学行为用于结构体系的时程分析及基于该模型识别钢制耗能器的力学性能参数奠定了理论基础。3、提出了高性能钢框架-支撑结构体系的简化模型,并对采用完全模型与采用简化模型计算分析所得到的结构动力特性、时程分析结果和时程分析效率等进行了对比。研究结果表明,该简化模型不仅具有较高的计算效率,并且具有较好的计算精度,将其用于结构体系的耗能减震优化分析中可以显著提高计算效率、缩短优化耗时。4、分别提出了高性能钢框架-支撑结构体系基于递增迭代法(IIM)和改进遗传算法(MGA)的耗能减震优化方法,并对采用两种方法进行耗能减震优化分析的结果和耗时进行了对比。结果表明,两种方法均可以得到经济合理的耗能器布置方案,使结构在各水准地震作用下均达到预期的目标层间位移角限值,并且使得结构层间位移角在耗能减震优化后沿高度分布较为均匀。此外,将高性能钢框架-支撑结构(HPSBF)与传统钢框架-支撑结构(CSBF)进行了对比,结果表明高性能钢框架-支撑结构相对于传统钢框架-支撑结构表现出更优的抗震性能,并且能够达到更好的经济效益。5、针对高性能钢框架-支撑结构体系的特点提出了相应的抗震性能目标及抗震性能化设计方法,并对设计流程中所涉及的相关问题提供了相应的解决方案,最后通过一个工程设计案例展示和验证了本文所提出的设计流程和相关技术方法。研究结果表明,基于本文所提出的设计流程及相关技术方法,可以较好地完成高性能钢框架-支撑结构体系的抗震性能化设计,使其达到预期的抗震性能目标。