与Moore-Penrose逆相关的加权SVD、条件数以及扰动界

来源 :复旦大学 | 被引量 : 0次 | 上传用户:yiyingyan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众所周知,相对条件数衡量着矩阵的逆以及线性系统的最小二乘解对扰动的敏感性,因此在数值计算一个矩阵的逆以及线性系统的最小二乘解的时候,条件数显得非常重要.在文章的开始,先介绍矩阵的加权Moore-Penrose逆和加权条件数的定义,接着给出了加权的广义奇异值分解和其在Tikhonov正则化中的应用,然后讨论了有关奇异矩阵(包含一般矩阵和结构化的矩阵)、奇异线性系统Ax=b的加权条件数以及与秩亏损有关的距离.设线性系统Ax=b的加权最小二乘解即min<,x>||Ax-b||M的解x,在实际计算中,由于存在误差,我们得到的只是min<,y>||(A+E)y-(b+f)||M的解y.为确定我们计算得到的y是否符合实际要求,对||y-x||N的误差界的计算显得尤其重要.文章的最后给出了线性系统Ax=b在假设条件rank(A+E)=rank(A)的下误差解.
其他文献
非线性系统的镇定问题一直是非线性控制理论研究中极其重要的课题之一,对于高阶非线性系统,在对向量场不满足增长性条件的限制时,一般不存在光滑控制律把系统镇定.该文主要研
该文我们主要给出了一些关于Novikov-Poisson代数的分类和单元限维Novikov代数的结果并且介绍了Novikov代数的形变理论,和李代数相联系,我们给出了典型李代数上的代数的具体
一般拓扑学的一个主要任务是不同拓扑空间类的比较,映射直接建立了不同拓扑空间类的联系,是实现该任务的重要工具.在广义度量空间理论研究中,用映射研究空间的一个方面是某些
Zienkiewicz O.C.和J.Z.Zhu于1992年在文[34]~[38]中完整地提出了超收敛单元片应力恢复技术Superconvergence patch recovery,简称SPR.由于它具有计算简单、易于理解、和现有
该文中对蛋白质序列的分形研究及应用,不考虑其真实的模型,将蛋白质序列视为一符号序列,对其进行适当的编码转化为数字信号求该信号的分维,并称之为蛋白质序列分维.该文最后
碰撞振子是非光滑动力系统中的一类重要模型,[8]中介绍了它的重要性.碰撞振子与其他许多问题有着联系,例如:对偶台球问题[2],天体力学[5],费米加速器[9].对于碰撞振子的研究
本文主要研究的是重尾索赔风险模型的破产概率及相应的数值模拟.在金融保险业中,对巨灾产生的大额索赔事件的研究一直是一个热点,这些极端事件不经常发生,一旦发生,将会给保险业务带来重大风险,可能会让保险公司陷入财务危机,甚至破产.近年来,众多学者已经对这些现象进行了大量研究,其中对保险公司破产概率渐近估计的研究更是备受青睐.在众多专家学者的努力下,得到了满足各种不同条件的渐近表达式,但这些研究成果大部分
人工智能是计算机科学的一个重要研究领域,受到广泛关注,而人工智能中的推理研究是最为活跃的研究方向与核心技术之一.该文以Fuzzy拓扑和模糊数学的理论与方法为基础,提出基