上协边类与丛空间

来源 :河北师范大学 | 被引量 : 0次 | 上传用户:flyballball
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
设M,N是光滑闭流形,p:M→ N为纤维丛投射.该文研究当Nm为RP(2)×RP(2)×RP(2)时,哪些上协边类具有代表元M使得M具有N上的纤维丛表示.另外,当n=19,21时,还决定了满足下述条件的最大值m:存在不可分解的上协边类α及其代表元M使得M具有实射影空间RP(m)上的纤维丛表示.
其他文献
1957年, A.Rényi引入了实数关于任意一个基β>1的展式,作为p进制展式的推广.在这个领域被研究的最多的一个问题就是β展式的数论性质以及对应的动力系统性质之间的联系.  
对于HIV病毒动力系统的研究可以帮助我们更深入的了解艾滋病的感染过程,也可以为抑制HIV在机体内的扩散提供理论依据和数据支持.本文研究了两个HIV病毒与宿主细胞间相互作用
该文提出了解非线性边值问题的边界积分方程的高精度机械求积法.积分算子被分解成单调的Hammerstein算子和一个紧算子后,运用Sidi求积公式,建立了非线性离散方程组.并借助Ans
该文讨论可积系统和对称约化的构造性方法在一些非线性问题中的应用.这两类构造方法在许多数学物理及微分几何的问题中起着重要的作用.全文分为四章:第一章,绪论.在第一章中,
学位
拓扑度理论是研究非线性问题的有力工具,利用它可以得到许多不动点定理.该文的目的是要把拓扑度理论推广到模糊数学领域,针对一类模糊映射建立模糊拓扑度.首先,该文提出模糊
近几十年来,由于在数论和奇异理论上应用的需要,计算n-维多面体的正整点数受到了数学家们的极大关注。设△(a1,…,an)表示n-维多面体x1/a1+…+xn/an≤1,x1≥0,…,xn≥0,其中a1≥…≥
块Davidson方法是求解对称矩阵特征值问题的一种有效的方法,由于块Davidson方法存储量大,通常在该方法中使用重新开始过程.该文主要研究了块Davidson方法的重新开始技术,提出
排序问题研究的是若干个任务要在一些机器上进行加工,如何安排机器和任务使得某些要求(目标函数)达到最优的问题.按处理机个数将排序问题分为:单机排序问题和多处理机排序问