【摘 要】
:
创新驱动战略是现阶段国家发展的战略目标,在此大背景下,知识产权战略作为创新驱动战略的重要支撑和保证,作用日益突显。而专利作为一种对知识产权保护(IP)的主要手段也愈加为人们所重视。同时随着新兴技术的飞快发展和专利的申请数量的急剧增长,待审查专利文本大量堆积,并且由于专利本身专业性的加强也使得对专利审查员的专业素质要求越来越高,增加了审查难度。专利侵权检测问题作为审查核心,是突破瓶颈的关键。然而手动
论文部分内容阅读
创新驱动战略是现阶段国家发展的战略目标,在此大背景下,知识产权战略作为创新驱动战略的重要支撑和保证,作用日益突显。而专利作为一种对知识产权保护(IP)的主要手段也愈加为人们所重视。同时随着新兴技术的飞快发展和专利的申请数量的急剧增长,待审查专利文本大量堆积,并且由于专利本身专业性的加强也使得对专利审查员的专业素质要求越来越高,增加了审查难度。专利侵权检测问题作为审查核心,是突破瓶颈的关键。然而手动侵权检测效率低下且容易出错,实现专利侵权检测的自动化能够有效提高审查效率,避免由于专利侵权带来的损失,因此有效解决专利侵权检测问题意义重大。我们发现在实际应用中,除了一对一的专利侵权问题,还经常会遇到一对多以及多对多的专利侵权问题,一对多和多对多的情况体现了专利集合对专利的否定,而专利的否定权有助于预测公司之间的专利战,保护知识产权,发现潜在专利交易。而目前自动侵权检测技术尚处于探索阶段,较多挑战性问题仍有待解决。基于此,本文提出了一种基于博弈论的专利侵权检测方法,具体研究以下内容:(1)为了计算专利侵权风险,本文提出了基于动态博弈的专利侵权风险检测方法。该方法使用技术特征作为判定专利侵权的证据,将技术特征的新颖性和创造性作为侵权判定原则,基于博弈论模型模拟专利审查过程,通过博弈得到专利的侵权风险及侵权证据。(2)为了计算专利否定权,本文基于一对一的专利侵权风险构建专利否定权网络,通过专利之间的侵权关系,结合专利的排他性,计算多个专利对一个专利的否定权以及多个专利对多个专利的否定权。(3)本文设计并实现了专利侵权检测系统,该系统包括四个模块,分别是数据预处理模块、专利侵权风险计算模块、专利否定权计算模块以及用户模块。本文采用基于博弈论的方法进行专利侵权检测,充分考虑了专利审查的现实过程,弥补了目前方法将专利文本视为普通文本的不足,同时基于专利侵权风险的专利否定权计算补充了专利侵权情况。实验结果表明,该方法能够有效地从若干专利中识别出侵权专利,可用于专利审查和专利战分析中。
其他文献
当今时代,以信息技术为核心的数字化工作模式日益盛行,各企业单位也紧随潮流不断创新,而传统资源管理方式具有不便共享、不便查阅、不便管理及易丢失等问题,所以线上智能知识资源管理需求应运而生。本文设计的基于云服务平台的数据知识资源管理系统,不仅解决了传统方式存在的问题,而且保障了企业知识的内部共享,提供了一个便捷、有效的资源管理平台。本文主要研究内容分为资源推荐、搜索引擎实现、手写笔记识别以及同步消息反
卷积神经网络在许多图像处理问题中应用广泛.它针对图像中每一个像素点进行计算,经过多层卷积后得到的高层次特征,这些特征对于图像语义分割至关重要.计算机利用这些特征可以自动从图像中分割出目标和背景,并识别出图像的目标物体的位置.由于经典的全卷积神经网络FCN和U-Net经常会在细胞核分割过程中错误地识别模糊的目标.因此在这篇论文中,本文将使用改进的U-Net网络结构解决细胞核语义分割中产生的问题,并做
针对传统工作流系统不能有效处理海量数据的问题,将工作流引擎与云计算相结合是行之有效的解决方案。然而,目前的云工作流引擎系统还存在着云资源利用率低、可移植性和可重用性差以及系统开发运营成本高等问题。为了解决这些问题,论文对IC-Flow Engine(Inner Mongolia University Cloud Workflow Engine)2.0系统的集成架构和底层云资源利用率进行改进和优化,
随着网络技术和计算机视觉技术的飞速发展,在许多实际应用中如机器人、自动驾驶汽车增强现实和物联网,视频分类已成为这些任务的核心问题。同时,视频分类任务常常需要在有限的内存资源和计算能力的设备上实时执行,以满足用户需求。而传统视频分类方法中的特征提取较为繁琐,且需要根据任务的特性尝试各种方式来决定最适合描述不同类别的特征,这是一个相当耗时的过程。另一方面,目前主流的视频分类方法是将视频完全解码成RGB
随着移动互联网信息技术的普及和蓬勃发展,网络用户及其业务需求在数量和规模上呈现急剧上升的趋势,进而导致云平台中的组合服务也变得越来越复杂化和多样化,这对云平台中组合服务的调度方法提出了更高的要求。传统的云应用供应商以虚拟机为基础来部署应用程序的方式,愈发地不能满足企业和用户对服务的迫切需求。而容器作为一种新型虚拟化服务技术,相较于虚拟机而言,具有响应速度快、资源利用率高以及更易于部署和维护等诸多优
移动群智感知网络(Mobile Crowdsensing Network,MCSN)是一种新的数据获取模式,致力于为人们提供普适的物联网服务。合理的任务定价机制不仅能够激励更多的用户参与感知任务,还有助于平台的良性发展,因而,逐渐成为群智感知领域的研究热点。现有的研究大多是根据历史交易情况或者MCSN中的某种主体交互进行定价,均未考虑两者协同定价。此外,还普遍存在未充分分析任务定价规律、定价预测模
近几年的研究表明长链非编码RNA(Long non-coding RNA,lncRNA)具有丰富强大的生物学功能,在真核生物的基因表达调控过程中发挥重要的核心作用。相对于lncRNA在哺乳动物上的研究,其在植物上的研究起步相对较晚,目前如何从大量的转录本中准确地识别出lncRNA仍然是植物lncRNA研究领域的重要问题之一。本文新建了两个数据集,一个是植物lncRNA和mRNA的数据集,另一个是单
作为云计算的基础设施,数据中心通常运行着大量多种类型的服务,在不间断工作下存在不同程度的资源空闲,直接或间接造成了一定的资源浪费和能耗开销。论文从数据中心网络角度出发,以保障云用户的需求为前提,设计一种基于休眠唤醒的网络流调度方法,提高资源利用率,降低能耗。该方法有以下创新之处:1.提出解决数据中心网络能耗优化问题的通用框架。该框架针对现有能耗优化方案在优化过程中可能降低用户服务质量的问题,引入服
深度学习凭借神经网络对语义的深度理解能力在机器翻译领域取得长足的进步。然而对于低资源语言,一个难以攻克的问题是大规模双语语料的缺乏导致的数据稀疏,以致于译文质量不佳。常见的解决思路如无监督方法会带来额外噪声,影响学习效率。为此,本文采用一种半监督的对偶学习方法构建蒙汉神经机器翻译模型,在两个对偶任务中形成一套闭环反馈系统,从未标注的数据上获得反馈信息,进而利用该反馈提高对偶任务中两个机器翻译模型的
近年来基因相关的研究备受关注。临床医学和生物实验产生海量的生物数据,目前有很多数据库都记录了基因和疾病的本体数据,但大部分数据库专一性较强,无法有效根据不同基因的关联关系发现基因潜在信息。本课题融合多个基因相关的数据源,使用改进的随机游走算法,研究并开发了基因集成资源搜索系统,并利用系统中多数据源融合的集成资源进行基因数据挖掘,发现基因的潜在功能。实验结果表明,本文提出的方法在融合了多个数据源之后