论文部分内容阅读
非线性算子的不动点及其方程理论是非线性泛函分析的重要内容,特别是在对各种各样的数学方程,如微积分方程及数值理论的研究和探讨中人们常把问题归结为某种算子不动点或算子方程加以讨论.本文主要讨论了非线性算子不动点及算子方程解的存在唯一性问题.利用非线性算子不动点理论中的锥理论及半序方法,讨论了这些非线性算子方程在一定条件下解的存在唯一性问题.全文共分三章:
第1章介绍本文的研究工作以及与之相关的背景知识和发展概况.同时介绍本文所需的相关知识.
第2章首先利用锥理论和迭代法在Banach空间中讨论一元序压缩算子方程Lx=Ax及二元序压缩算子方程Lx=A(x,y)的可解性.引入新的概念及方法,在算子L不必连续的情况下,获得了这两类算子方程解的存在性定理,通过构造出迭代序列去研究其逼近性.其次研究了混合单调算子的不动点存在性问题,把压缩映射推广到了函数及算子的形式,且不再假设算子是连续的,推广了已有文献的结论.
第3章在Banach空间中引入了一种广义的τ-()凹(-ψ)凸算子,统一讨论了一类具有某种凹凸性的混合单调算子的不动点问题.在非紧非连续的条件下,利用单调迭代技巧证明了不动点的存在唯一性,进而得到凹-Guo凸,凹-(-α)凸,α凹-凸,α凹-Guo凸,e凹-Guo凸,e凹-(-α)凸,e凹-凸,α1凹(-α2)凸等性质的混合单调算子的不动点定理.最后将所获得的结果应用于对Hammerstain非线性积分方程解的存在性问题的研究.