论文部分内容阅读
我国位于东亚季风区,天气和气候灾害频繁发生,然而相较于天气预报和气候预测,灾害天气延伸期预报的可预报性和预报方法的研究起步较晚,过去研究多关注季节内振荡对持续性降水和洪水的影响,对夏季高温热浪及热带气旋的季节内尺度变化机制及其相关的延伸期预报方法甚为匮乏。本文基于多套全球再分析资料、次季节预报数据,结合数值模式敏感性试验,利用多种气候诊断方法,对东亚夏季热浪和热带气旋的次季节变化机理进行深入探讨,在此基础上研究其延伸期预报的可预报性来源,并尝试建立热带气旋的延伸期预报方法。夏季季节内振荡(Boreal Summer Intraseasonal Oscillation,BSISO)是东亚夏季延伸期预报最重要的可预报性来源,它主要包含了两个BSISO模态,分别是和30–90天的低频季节内振荡MJO和10–30天的准双周振荡QBWO。相较于MJO,针对10–30天QBWO的实时监测指数还比较缺乏,因此本文首先利用扩展经验正交(EEOF)方法建立了QBWO指数,并且利用该指数以及MJO指数对影响东亚夏季热浪的特征和相关物理机制进行研究,利用较新的次季节至季节(S2S)业务预报模式对热浪的预报结果,讨论BSISO对热浪延伸期预报技巧及可预报性的影响。在BSISO对西北太平洋(western North Pacific,WNP)热带气旋(tropical cyclones,TCs)影响研究方面,不同于过去研究把所有WNP TCs(包含不同生成区域、不同路径)综合研究,本论文采用客观统计方法,首先将WNP TCs进行分类,以进一步深入研究BSISO如何影响不同类型TC的生成、移动轨迹和强度;在此基础上,针对每类TC分别建立TC延伸期预报模型,建立可以提前10–40天预报WNP TC生成和轨迹概率的预报新方法。全文主要结论如下:(1)建立了基于扩展经验正交(EEOF)方法的东亚季风区准双周振荡实时指数。通过利用对提取复杂的时空演变信号具有优势的EEOF方法建立了针对WNP和印度洋的QBWO实时指数:将非带通滤波方法得到的10–30天对外长波辐射(OLR)距平场分别投影到WNP和印度洋的10–30天带通滤波的前两个EEOF模态上,分别得到WNP和印度洋的QBWO实时指数。与其他QBWO指数相比,本文建立的QBWO指数更好地掌握了东亚季风区QBWO的空间分布特征与季节变化特征,能够更好地体现QBWO活动与南海季风和印度季风爆发之间的关系,对极端暴雨事件的监测具有一定的优势;同时也能够反映QBWO调控WNP和印度洋上的TC活动和东亚季风降水的基本特征。(2)明确了两类BSISO对东亚夏季热浪的发生概率、强度及多发区域的影响和调控机制,及其对热浪可预报性的影响。利用新的BSISO指数对东亚地区热浪在两类BSISO的不同位相的发生概率进行气候诊断分析。在QBWO信号从赤道向西北方向传播的过程中,当QBWO抑制性对流的高压异常位于我国长江流域一带时,高压西北方的西南风异常和下沉运动造成的绝热加热作用有利于长江流域热浪的发生;对于MJO来说,当增强的MJO对流位于热带西北太平洋时,MJO热源能够向北激发出罗斯贝波列,在中纬度地区形成高压异常,导致下沉运动伴随绝热加热和晴空条件形成的地表非绝热加热作用,共同导致了长江流域和日韩地区热浪的发生。S2S预报模式对BSISO的预报技巧对热浪的延伸期预报技巧至关重要,影响了热浪延伸期预报的可预报性。(3)揭示了BSISO影响西北太平洋上不同类型的TC生成、移动和强度的物理过程。通过模糊聚类分析方法将西北太平洋上的TC客观地分成七类,定量分析在次季节尺度上台风生成指数对每类TC生成的相对贡献大小,诊断结果显示,BSISO最主要通过改变中层相对湿度场来影响各类TC生成,其次为低层的绝对涡度。此外,BSISO能够通过改变季风槽和副热带高压之间的相对大小和位置,改变季节内尺度的背景引导气流,进而影响不同类型TC的轨迹。对于直行的TCs(类型1,5和7),BSISO的气旋性气流主要位于低纬的中国南海和菲律宾海附近,因此西北太平洋的副热带高压西伸从而增强了东风。与之相反,增强的BSISO气流导致西北太平洋的副热带高压东移,有利于类型4和类型7这种具有北折路径特征TC的发展。BSISO还能通过改变BSISO尺度的垂直温度廓线和海温来影响不同类型TC的强度。(4)建立了西北太平洋上TC的延伸期统计预报模型和混合动力-统计预报模型,可提前3~4周预报出西北太平洋上台风生成个数、位置和轨迹概率分布。在深入理解了BSISO对WNP每类TC活动调控机制的基础上,利用WNP上七类TC每十天的生成个数与前期BSISO大尺度场之间的统计关系,建立了WNP的TC延伸期统计预报模型;另一方面,通过利用GFDL的FLOR动力模式预报的BSISO大尺度场,和TC个数与观测的BSISO大尺度场的同期统计关系,建立了WNP的TC延伸期混合动力-统计预报模型。结果显示,这两种TC延伸期预报模型可提前20–25天对未来每十天中WNP生成的TC个数进行预报。利用预报得到的每类TC的个数,以及每类TC轨迹的历史气候态概率分布,可以对TC轨迹概率分布进行空间预报。