【摘 要】
:
在高等真核生物进化的过程中,ZW10蛋白是相当保守的。大量的研究已经证实,在动物细胞中,ZW10无论对于有丝分裂还是减数分裂过程中染色体的准确分离都是十分重要的。在细胞分裂的间期,ZW10蛋白还参与内质网和高尔基体之间的膜泡运输。多重序列比对显示,不同生物的ZW10蛋白序列中存在许多一致的区域,表明在不同的有机体中,ZW10蛋白可能具有相似的功能。本文对拟南芥中ZW10同源蛋白-AtZW10-进行
论文部分内容阅读
在高等真核生物进化的过程中,ZW10蛋白是相当保守的。大量的研究已经证实,在动物细胞中,ZW10无论对于有丝分裂还是减数分裂过程中染色体的准确分离都是十分重要的。在细胞分裂的间期,ZW10蛋白还参与内质网和高尔基体之间的膜泡运输。多重序列比对显示,不同生物的ZW10蛋白序列中存在许多一致的区域,表明在不同的有机体中,ZW10蛋白可能具有相似的功能。本文对拟南芥中ZW10同源蛋白-AtZW10-进行了初步研究。RT-PCR和GUS染色结果显示,AtZW10在不同的组织和器官中均有表达,但在花和种子中表达量更高。亚细胞定位分析表明,这一蛋白在细胞核和细胞质中均有分布,但在细胞核中分布更为显著。通过分析该基因的3个T-DNA插入突变体,结果显示,在正常的生长条件下,这些突变体的表型与野生型没有明显的差异;但在不同的胁迫条件下,突变体种子萌发比野生型要快的多,这些数据表明AtZW10很可能作为种子萌发的负调控因子参与种子萌发的过程。进一步的研究证实,AtZW10影响细胞分裂和早期胚胎发育的过程。在zw10-2突变体中,与野生型相比,有丝分裂和减数分裂都存在明显的缺陷。在突变体有丝分裂的后期,可以观察到染色体分离延迟现象;而在减数分裂的突变体细胞中,异常的分裂可出现在细胞周期的不同阶段,这些异常包括染色体片段,不均等或不同步的染色体分离,以及延迟的染色体等。并且,实验结果显示,AtZW10功能缺失将导致拟南芥胚胎发育的早期出现明显的抑制,多数突变体胚胎被抑制在2-细胞时期。这些突变体胚胎的细胞分裂面出现异常,纵向分裂常常被横向分裂所取代,并且还出现低频率的独特的分裂方式。此外,初步的分析显示,在拟南芥中,MAG2蛋白(即动物细胞中RINT-1蛋白同源物)似乎能与AtZW10蛋白相互作用,并参与内质网和高尔基体之间的膜泡运输。总之,结果表明,AtZW10是一种在进化上相当保守的蛋白,具有多种重要的生物功能。
其他文献
本论文利用中科院近代物理研究所原子分子动力学组建立的反应显微成像谱仪(COLTRIMS),系统地研究了17.5keV/u到75keV/u He2+-Ar原子碰撞电荷转移机制,以及转移电离过程电子出射机制。我们获得了单、双电子俘获过程中反冲离子纵向和横向动量分布,T1I1过程出射电子的单重、双重微分截面(SDCS、DDCS),电子在散射平面内外的分布以及靶激发相关的反冲离子纵向动量分布。此外,还获得
近几年来,量子剪裁发光材料由于在无汞荧光灯、等离子平板显示(PDP)以及太阳能电池方面的潜在应用而备受关注。众所周知,到目前为止可见光量子剪裁研究中的首选基质仍为氟化物,然而氟化物不稳定,氟化物基质在真空紫外(VUV)区域的吸收弱,能量传递效率低,限制了荧光材料在实际中的应用。而含氧酸盐体系因其稳定的物理化学性质一直是真空紫外(VUV)及紫外(UV)用荧光粉研究中的优秀基质材料。本论文选择含氧酸盐
基于量子干涉的各类物理效应的发现与应用是量子光学最令人瞩目的进展,如果能以量化描述方式将量子干涉描述出来,这不仅有利于我们理解难以捉摸的量子效应,更有利于我们有效地控制这些效应。同时由于几何相位在量子计算方面的独特优势,使得被忽略很久的几率波函数中的相位问题又重新成为研究热点之一,因此量子态的测量作为一个基本问题又引起了我们的重视。本文基于以上的研究背景首先研究了由高斯脉冲场所制备的量子体系。当以
本论文主要研究了α,β-不饱和烯烃或芳基硅烷参与的偶联反应。此外,研究了硼促进的醚交换反应。内容如下:1.钯催化的(杂)环烷基碘代物和α,β-不饱和烯烃的还原Heck反应开发了钯催化的(杂)环烷基碘代物和α,β-不饱和烯烃的还原Heck反应。以(杂)环烷基碘代物为反应底物,1.5当量α,β-不饱和烯烃为偶联试剂,10 mol%Pd(OAc)2为催化剂,20 mol%Dppf(1,1’-双(二苯基膦
背景和目的:白血病是一种起源于造血干祖细胞的恶性血液系统疾病,白血病细胞的不可控增殖是其典型病理特征。白血病细胞大量增殖一方面通过干扰正常的造血可引起多系正常血细胞减少,另一方面还可以浸润到多种组织以及器官进而影响其生理功能。急性髓系白血病(acute myeloid leukemia,AML)是成人最常见的急性白血病之一,其发病迅速,如果不及时治疗可在数周内死亡。目前认为,AML的病理原因主要为
近年来,随着电力需求的不断增加,我国大多数的电网都出现了高峰期供电不足、低谷期供电过剩的局面。而蓄冷空调系统的提出可以解决上述问题,该技术在电力负荷低谷期开启制冷机,并将产生的冷量储存起来,在用电负荷高峰期将蓄存的冷量输送到用户端,这样便降低了电力负荷高峰期的制冷空调系统的电力消耗,缓解了电网紧张的局面。此外,在蓄冷空调系统中,将冷量输送到用户端时可以采用二次载冷剂,从而可以有效减少制冷系统中的传
在压水堆大破口失水事故中,为防止堆芯裸露燃料元件过热烧毁,需要向堆芯注入应急冷却水快速淹没堆芯。堆芯再淹没过程中,由于包壳表面温度过高,在冷却水与包壳之间会形成气膜,发生膜态沸腾换热。当包壳表面温度降至最小膜态沸腾温度以下时,冷却水才能再湿润高温表面进入过渡沸腾,从而显著提升换热能力。冷却水湿润高温表面的现象,决定了燃料棒表面的骤冷速率。在骤冷前沿下游的蒸汽冷却区域,夹带在蒸汽中的液滴撞击包壳壁面
包括32个中国的Acidithiobacillus spp.野生菌株、3个参比菌株以及GenBank数据库中搜索到的具有代表性的其它相关菌株的16S rRNA基因序列和转录间隔序列(ISR)构建进化树。所有的Acidithiobacillus spp.菌株被划分为三个系统学大群(Cluster)、8个系统学组(Group)。研究表明,ISR序列的差异是种特异的,即每个种之间有明显的差异。8个Aci
脑缺血再灌注损伤(CIRI)是指脑缺血一段时间后恢复血液,这将引发一系列病理反应并引起更严重的继发性损伤,再灌注后细胞和组织中的生物分子被破坏。缺血再灌注(I/R)损伤的发病机制是多因素的和复杂的,涉及炎症、钙超载、氧化/亚硝化应激、内质网应激和表观遗传变化等。小胶质细胞是神经中枢中主要的免疫细胞,对防御病原微生物的入侵具有重要的作用,它是中枢神经系统最重要的免疫防线。炎症反应会导致小胶质细胞会经
以农村农业税费体制改革为分界点,国家在村庄的治理角色和治理机制都发生了转型,维护和增进村庄的公共利益成为其在村庄的治理目标。具体来说,国家在村庄的治理转型表现为四个方面:服务嵌入,推动村级组织的职能转型;福利嵌入,推动治理资源、手段的转变;项目嵌入,推动农村公共品供给机制转型;技术治理的嵌入,推动村级治理的规范化、程序化、标准化。但实践表明,作为一种新的治理模式,国家在村庄社会的治理实践出现了很多