论文部分内容阅读
由于非自治动力系统以及自治动力系统与其对应的超空间动力系统一直以来是广大学者研究的热点课题,而对超空间非自治动力系统的研究就成为一个比较新的课题.本文主要研究Li-Yorke敏感性,分布混沌性,F-敏感性和多重敏感性这几类混沌性质在超空间非自治动力系统上的情况. 首先,将非自治动力系统的迭代系统(X,f[k]1,∞)的Li-Yorke敏感性和分布混沌性引入到了超空间上,讨论了超空间非自治动力系统的迭代系统(K(X),-[k]f1,∞)的Li-Yorke敏感性和分布混沌性,研究了系统(K(X),-f1;∞)的Li-Yorke敏感性和巧-混沌性在其迭代运算下保持的条件.此外,还分析了两个超空间非自治动力系统的迭代系统与其复合乘积动力系统的Li-Yorke敏感的蕴含关系.其次,将超空间自治动力系统的F-敏感性与多重敏感性引入到更一般的非自治动力系统中,讨论了超空间非自治动力系统(K(X),-f1,∞)的F-敏感性与多重敏感性.分为以下两个部分:第一部分讨论了非自治动力系统与其对应的超空间非自治动力系统之间的F-敏感和多重敏感的蕴含关系;第二部分讨论了两个非自治动力系统与其对应的超空间非自治动力系统的复合乘积动力系统之间的F-敏感的蕴含关系以及两个超空间非自治动力系统与其复合乘积动力系统之间的F-敏感和多重敏感的蕴含关系.本文研究超空间非自治动力系统的几类混沌性质的思想也可以运用到其他超空间非自治动力系统的混沌性质的研究中.