关于超空间非自治动力系统几类混沌性质的研究

来源 :重庆师范大学 | 被引量 : 0次 | 上传用户:mumurong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于非自治动力系统以及自治动力系统与其对应的超空间动力系统一直以来是广大学者研究的热点课题,而对超空间非自治动力系统的研究就成为一个比较新的课题.本文主要研究Li-Yorke敏感性,分布混沌性,F-敏感性和多重敏感性这几类混沌性质在超空间非自治动力系统上的情况.  首先,将非自治动力系统的迭代系统(X,f[k]1,∞)的Li-Yorke敏感性和分布混沌性引入到了超空间上,讨论了超空间非自治动力系统的迭代系统(K(X),-[k]f1,∞)的Li-Yorke敏感性和分布混沌性,研究了系统(K(X),-f1;∞)的Li-Yorke敏感性和巧-混沌性在其迭代运算下保持的条件.此外,还分析了两个超空间非自治动力系统的迭代系统与其复合乘积动力系统的Li-Yorke敏感的蕴含关系.其次,将超空间自治动力系统的F-敏感性与多重敏感性引入到更一般的非自治动力系统中,讨论了超空间非自治动力系统(K(X),-f1,∞)的F-敏感性与多重敏感性.分为以下两个部分:第一部分讨论了非自治动力系统与其对应的超空间非自治动力系统之间的F-敏感和多重敏感的蕴含关系;第二部分讨论了两个非自治动力系统与其对应的超空间非自治动力系统的复合乘积动力系统之间的F-敏感的蕴含关系以及两个超空间非自治动力系统与其复合乘积动力系统之间的F-敏感和多重敏感的蕴含关系.本文研究超空间非自治动力系统的几类混沌性质的思想也可以运用到其他超空间非自治动力系统的混沌性质的研究中.
其他文献
混沌是自然界中广泛存在的一种复杂的非线性运动形式。由于混沌信号具有初值和参数的极端敏感性、非周期性、连续宽带频谱、类噪声以及长期不可预测性等优良特性,因而特别适用
均衡是一个研究许多实际生活现象中某些系统的一个核心概念,这包含了从 经济、网络到力学等许多领域,均衡在现实中的应用研究也促进了不动点和最优 化理论的发展.抽象变分不等
随着信息的快速发展,图像正在以惊人的速度增长,如何在海量的图像中检索出需要的图像是一个关注的问题。近年来,图像的检索技术正在不断的发展,由最初的基于文本的图像检索技
偏微分方程在科学和工程技术中有着广泛的应用,许多实际问题的数学模型都可以用偏微分方程来描述,但很多偏微分方程无法求出解析解,只能用各种方法求出其数值解。格子Boltzma
不确定性问题作为人工智能最核心的研究任务,将不确定性问题的求解方法大致分为两类:一类是基于概率的方法,一类是基于非概率的方法。因果图推理是一种概率的方法,因果图以图