论文部分内容阅读
在人们的社会生活以及科学研究中,图像都是不可缺少的工具。信息工程学、生物医学等学科的发展都与图像处理技术密不可分。非局部和变分正则化方法在图像处理中应用广泛,并取得了大量的研究成果,许多经典模型和算法也由此产生。本论文主要应用非局部方法和二阶总广义变分(TGV)正则方法讨论图像处理中的一些数学算法和模型。本文工作的创新之处是提出了几种改进的图像去噪、放大和修复算法。主要工作如下:1.针对去除纹理图像中的高斯白噪声问题,结合新的多尺度几何分析工具波原子和非局部TV正则化提出了一种新的去噪模型。该模型充分利用了波原子对振荡纹理图像的稀疏表示能力和非局部TV能较好地处理纹理图像的优点,使得新方法处理后的纹理图像避免了伪吉布斯振荡现象。实验结果表明新方法在保持图像的细节方面与单纯的波原子阈值方法和非局部TV方法比较有明显的改善,取得了比较好的视觉效果。2.针对全变差的图像放大方法在放大图像的同时会产生阶梯效应这一缺陷,提出了两种新的图像放大模型。一是改进的Chambolle TV图像放大模型,用二阶TGV正则项做为正则项,避免了TV放大模型产生的图像块效应,而且能更好地恢复图像的细节边缘及纹理信息,处理后的图像比TV模型和小波模型有更高的峰值信噪比和更好的视觉效果。二是以小波放大模型为基础,提出了一种基于小波与二阶TGV的图像放大方法,该方法利用原图像作为放大图像的小波低频子代,估计高频,重构后的放大图像用二阶广义总变分进一步迭代处理,得到了一种新的图像放大方法。由于二阶广义总变分能去除图像的块效应,更好地恢复图像的细节纹理信息,因而能够重构出高质量的图像。实验仿真表明,该算法不但达到了比较好的放大效果,而且也得到了令人满意的去噪效果。3.乘性噪声的去除问题是图像处理中的一项重要研究课题。在乘性噪声服从Gamma分布的假定下,首先用引导核回归(SKR)和TV提出了一个三阶段的乘性噪声去除方法,第一阶段在图像的对数域用自适应的SKR对图像进行去噪处理;第二阶段用全变差方法对第一阶段处理的结果补充处理;第三阶段通过指数变换和误差纠偏,把图像变回到真实的图像域。新方法集中了SKR与全变差两种方法的优点,实验结果表明新算法去除乘性噪声的有效性。其次分别基于非凸二阶TGV正则化与非凸低秩正则化方法,提出了两种去除乘性噪声的正则化模型。两种新模型都使用了快速的交替迭代算法求解。数值实验证实这两种非凸算法处理后的图像去噪效果令人满意,同时保持了图像的边缘结构和细小的纹理,并避免阶梯效应。4.针对卡通纹理图像修复问题,提出了一种改进的卡通纹理图像修复模型。用迫近p范数逼近卡通纹理稀疏系数的0l范数,并且建立了此问题的迫近前项后项分裂算法,仿真实验表明了此非凸稀疏的图像修复算法比经典的TV修复和常见的1l稀疏修复算法有更好的修复结果,图像的纹理结构信息修复较好。