论文部分内容阅读
工业机械手在工业制造、装配等各部门中的广泛使用大大提高了生产率,并且能在柔性的生产环境中,以较低的成本完成各种制造、装配、搬运等工作。工业机械手及其控制算法研究已经有了几十年的历史。但是由于工业机械手是一个高度非线性、强耦合、时变的系统,模型精度问题、庞大的计算量和设备成本成为了很多理论算法投入生产实践应用的“瓶颈”。同时,当前商业机械手所采用的算法,仍然存在很多的缺点,制约了机械手进行更高精度、更高速度的工作。 应用迭代学习算法控制机械手,可以在无法准确建模的情况下,通过迭代学习,逐渐完成对期望轨迹的完全跟踪,这一特点使迭代学习控制算法成为进行机械手轨迹跟踪控制的一个良好的选择。但是,机械手在现实工作中存在很多的限制,比如:电机最大转矩的限制、关节转角的限制、工作时间区间不等长等,这些不满足迭代学习算法标准前提假设的现实情况,给迭代学习算法的应用带来了一定的困难。如何在上述这些限制和条件下,使迭代学习控制算法收敛,并使机械手得到良好的控制,实现对期望轨迹的完全跟踪,成为了一个很好的课题。为此,本文设计了几种迭代学习控制律,并以收敛性证明和系统运行仿真检验了其理论上的收敛性和实际中的有效性。 本文的创新点和主要工作在于: ·机械手是一个时变的系统,如果采用固定的迭代学习算子,很难达到很好的收敛效果和较快的收敛速度。于是,需要采用一个合适的时变迭代学习算子,使机械手的输出轨迹更快更稳定的逼近期望轨迹。本文对Avrachenkov提出的机械手类牛顿迭代学习律的前提假设做了修改,并给出了收敛性证明。并对带反馈的机械手类牛顿学习控制律(算法A)做了简化,参考了Tae-yong Kue,Kwanghee Nam and Jin S.Lee的研究成果,得到简化的机械手反馈迭代学习控制律(算法B)。摘要 ·工业机械手控制器的输出信号是与每个关节电机所需提供的转矩相对应的。在实际应用中,电机输出受到最大转矩限制,则控制器的输出也是受最大转矩限制的。这样控制器就无法按照迭代学习算法的计算结果正常输出,迭代学习控制律原有的迭代关系被破坏,并有可能破坏迭代学习控制算法的收敛性。本文针对这一情况作了讨论,基于连续时间系统,对控制器输出有限制的情况下的迭代学习算法做了收敛性讨论和证明,并且证明了前面提出的算法A和算法B可用于控制器输出有限制情况下的机械手控制。 ·工业机械手的各个关节,由于机械上的限制,不能无限角度旋转。而这种关节的限位,在机械手动力学方程里是没有体现的。这种对象输出的限制使迭代学习算法的控制对象的性质发生了很大改变,而这就要求对迭代学习算法的收敛性重新做出讨论。本文对对象输出有限制情况下迭代学习算法的收敛性做了讨论和证明,并且提出了一种在这种情况下,能相对维持收敛速率的迭代学习律的改进策略。 ·在机械手的实际生产过程中执行迭代学习控制,希望每一次运行不仅仅是一次学习过程,同时希望每一次运行都能真正完成所指定的工作。这带来了迭代学习算法工作时间区间不等长的问题,而迭代学习算法的标准前提假设是要求工作时间区间等长的。本文针对这种情况,提出了一种能证明其收敛性的迭代学习算法改进策略。