基于电化学交叉脱氢偶联的羧酸和硒醇的磷酸化反应研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:zous111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
有机磷是各种有机分子和天然产物中至关重要的结构基序,它们具有特殊的化学和生物学特性,因此被用于有机合成,生物化学和农药化学等许多领域。所以,此类化合物的合成引起了有机研究人员的大量关注。合成含磷有机化合物的传统方法通常依赖于亲核取代反应,以及利用金属催化剂、化学氧化剂等试剂、或者采用底物预官能团化、多步反应等手段来实现。这些方法都都会对环境造成一定的污染以及试剂的大量浪费,从而限制了他们的实际应用。为了解决全球环境污染问题,发展环境友好的有机合成显得迫在眉睫。与传统的氧化反应相比,电化学有机合成由于其不需要氧化剂(还原剂),过渡金属催化剂等独特的优势已被认为是一种方便,环保且温和的有机合成方法,因而受到了有机合成化学研究者的广泛关注。有机电化学策略可以提高原子和步骤经济性以及最大程度低减少化学废弃试剂的产生,并且避免了底物预官能团化的过程,与常规的化学反应策略相比就有着更大的优势。基于此,为了实现有机磷的绿色构建,论文采用电化学交叉脱氢偶联的方法开展了羧酸和硒醇的磷酸化反应研究。本文的主要研究内容:1)在电化学条件下,以羧酸和膦酸酯为原料在不使用金属催化剂以及外源氧化剂的情况下实现了酰基磷酸酯的合成。一些常见的与医学相关的杂环类羧酸也能良好的适用于该反应。除此之外,还能高效地利用一锅法在温和的条件下合成对应的酰胺,并对反应的可能机理进行了研究;2)在电化学条件下以硒醇和膦酸酯或二芳基膦氧化合物作为原料,在不使用金属催化剂以及外源氧化剂的情况下实现了有机硒磷化合物的合成,取代基的良好耐受性使得该反应在制备有机硒磷化合物中更具吸引力与应用价值,并对反应的可能机理进行了研究。
其他文献
创新创业是高职生摆脱低端就业的蹊径,也是职业教育提供多样化产品和服务以满足人民群众日益增长的美好生活需要的必然要求。针对当前高职创新创业教育存在的问题,提出了“大一造氛围、输思想,大二搞创作、出成果,大三成习惯、利终生”的基于信息技术支持的创新创业教育新模式,并详细阐述了利用信息化手段点燃高职生创新创业热情、提供全天候创新创业导师辅导服务、创设无死角的创新创业氛围、进行多专业交叉融合及分类教学、促
基于高职院校药品生物技术专业“基因工程”课程进行的教学改革,将创新创业教育融入专业核心课程,具体做法:更新教学理念,优化课程内容,构建任务引领的课程体系,在“基因工程”课程中引入培养学生创新思维和创业能力的教学方法,改进课程评价方式。研究结果:经尤金创造力自陈量表测试,学生创新创业能力得到提升。结论:创新创业教育与专业课程深度融合是大学生创新创业教育必不可少的环节。
准单晶硅和高效多晶硅是目前市面上太阳能电池的两种主要材料,它们都是通过籽晶辅助硅熔体定向凝固生长制备。研究籽晶辅助硅熔体凝固生长初期的形核以及长大规律对于提高硅晶体质量至关重要。然而实验上难以对封闭坩埚内的硅熔体进行直观深入的研究。本文通过分子动力学模拟方法,选择实验上采用的碳化硅籽晶为研究对象,运用Tersoff势函数描述原子间相互作用,分别建立了以碳化硅单晶和碳化硅双晶为籽晶的硅熔体定向凝固生
α-芳基羰基化合物作为常用的合成骨架在有机合成中占据重要地位,其广泛存在于许多天然产物、药品、农用化学品、高效配体、有机材料等。因此,开发高效的羰基化合物α-芳基化合成方法对有机化学家和药物化学家具有重要意义。到目前为止,芳基碘化物、芳基溴化物、芳基氯化物、芳基三氟甲磺酸盐和芳基芳烃磺酸盐等在钯催化羰基化合物的α-芳基化反应中得到了广泛的应用。然而,芳基溴化物和碘化物往往昂贵,芳基氯化物活性较低,
将呋喃醛(例如糠醛或5-羟甲基糠醛)升级为环戊酮化合物(例如环戊酮或3-羟甲基环戊酮)对于合成高价值化学品和生物质利用具有重要意义。开发具有Lewis酸性的有效还原性金属/酸性载体是促进氢化环重排反应中C=O氢化和水解步骤的关键。目前,还原性金属/酸性载体中的Br(?)nsted酸会导致反应中的碳损失,而较弱的Lewis酸难以引发水解步骤。因此,设计具有高选择性C=O氢化能力和Lewis酸催化的环
有机-无机杂化相变晶体材料由于其常常具有由温度触发而响应的介电、非线性光学以及铁电等光电性能,从而在信号交换、光学器件和能量储存等方面有巨大的潜在利用价值。因此探索和合成性能优异的有机-无机杂化材料一直是前沿课题之一。由于有机小分子胺阳离子组分通常会对外界的刺激产生响应,发生结构相变,因此关于有机部分分子的研究长期聚焦在有机小分子胺类化合物上。根据近来提出的“似球-非球理论”、“动量匹配理论”以及
光催化是一项十分具有潜力的绿色能源新技术,其中光催化剂在太阳能转化为清洁能源过程中起着关键的媒介作用。因此,光催化技术研究的重点是寻求高效稳定的光催化材料。金属氧化物半导体光催化材料具有廉价、易制备、光氧化以及还原能力强等优点而被广泛应用于光催化领域。而ZnO具有良好的激子束缚能以及形貌结构易调控的优势,且具有低毒性、低成本、高稳定性以及可回收性的优点,在众多半导体材料中脱颖而出。但是,由于氧化锌
气体辅助挤出成型技术是一种基于传统挤出工艺发展出来的具有广阔前景的新型聚合物加工技术,因其能通过在聚合物熔体与口模内壁面之间形成一层薄气垫膜层从而有效改善传统挤出过程中熔体挤出胀大等缺陷而备受国内外学者和业界的重视。纵观目前的气辅挤出研究,大多都是研究口模截面形状或工艺参数对气辅挤出成型在挤出制品界面尺寸及气垫层稳定性的影响,而关于口模内注气角度对气辅挤出制品质量的影响等方面鲜有研究。本文以聚合物
稀土基配位材料可分为晶态稀土有机骨框架和无定形稀土配位聚合物。由于内部4f电子结构独特、4f电子能级组态丰富、价电子数丰富、配位能力强、配位模式多样等特点,稀土元素可产生f→f跃迁发光,荧光范围可从紫外光区拓展至近红外区。基于大斯托克斯位移、长发光寿命和窄发射带等独特的光谱特性,稀土元素已被广泛用作发光探针。高光吸收效率的有机配体通过与稀土离子配位形成稀土有机配位化合物后,由于有机配体与稀土离子之
碳碳键断裂在石油工业和复杂有机分子合成中有着非常广泛的应用。碳碳键断裂可以使得利用自然界和化学工业中广泛且廉价的原材料来直接生产高附加值功能化合物成为可能。在过去的几十年中,碳碳键活化得到了快速发展,包括通过环张力释放实现张力碳碳键活化,以及通过氧化加成(腈和酮),β-碳消除(醇,胺和其他底物),氧化和其他途径实现极性碳碳键活化。然而非极性非张力碳碳键活化仅有极少量的报道,并主要局限于过渡金属催化