粗糙核分数次积分算子及其极大算子交换子的加权不等式

来源 :哈尔滨师范大学 | 被引量 : 0次 | 上传用户:hwyvvv
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Riesz位势是调和分析中的重要算子,具有齐性核或粗糙核的分数次积分是围绕Riesz位势发展起来的一个非常活跃的课题.近年来,关于齐性核(粗糙核)分数次积分算子在各种空间上的有界性的研究取得了丰富的成果.  本文主要研究粗糙核分数次积分算子及其极大算子交换子的加权不等式成立的充分条件.  第一章为绪论部分,给出了分数次积分算子及其交换子的发展综述,对粗糙核分数次积分算子在Hardy空间上的有界性进行了简单介绍.并陈述了文章的主要研究内容和方法.  第二章主要研究粗糙核分数次积分算子的双权弱型不等式成立的充分条件,即权函数(u,v)需要满足和Orlicz函数相关的Ap型条件.  第三章应用Stein–Weiss变测度算子内插定理,给出了粗糙核分数次极大算子的加权强型不等式成立的充分条件.
其他文献
在多维系统领域中,不定系统的鲁棒性分析与综合的流行框架需要在线性分式表示里构造一个潜在的多项式和合理不确定性参数,而通过罗塞尔模型,线性分式表示不定模型问题在代数学上
本文主要研究了非倍测度空间上分数次积分算子交换子的加权有界性以及多线性分数次积分算子交换子的弱型加权估计.全文共分为三章.  第一章是绪论部分,介绍了分数次积分算子
在逝去的近十年时间里,偏微分方程在图像处理中的各种应用已发展成为应用数学、计算机视觉识别技术与数字图像处理与分析等领域的重要研究热点;在图像增强,图像去噪,图像修复