【摘 要】
:
经验似然作为一种非参数方法有很多优点,尤其是在用于估计和检验时,不需要假设总体分布.本文对于经验似然置信域体积,提出了重要抽样法计算置信域体积的方法;对于若干回归模型,利用
论文部分内容阅读
经验似然作为一种非参数方法有很多优点,尤其是在用于估计和检验时,不需要假设总体分布.本文对于经验似然置信域体积,提出了重要抽样法计算置信域体积的方法;对于若干回归模型,利用数据删除法,提出了经验似然置信域体积比诊断统计量.
本文主要讨论了非线性模型、删失线性模型以及误差项为t-分布的线性模型的异常点诊断问题,在寻找异常点或强影响点时对比了经验似然置信域体积比、Cook距离等方法.用实例及模拟检验经验似然置信域法的可行性和有效性.在实例及随机模拟中,当误差项的总体分布满足正态性假设时,经验似然置信域方法和其他常见统计量一样可行;当误差项的总体分布不满足正态性假设时,其他常见统计量会误判异常点,而基于经验似然置信域的方法可以准确的判断出异常点或强影响点.从而说明,在回归模型中,经验似然置信域方法比其他常见统计量更立足于数据样本,而不是误差项的总体分布假设.
其他文献
迄今为止,虽然标号图的发展历史已有几十年,但是仍然很难从理论上对一般图的标号进行研究,仅能探讨一些特殊的图的标号问题,大部分文献都是给出一种特殊图的标号。
在实
设(M,T)是一个带有光滑对合T的光滑闭流形,T在M上的不动点集为F={x|T(x)=x,x∈M},那么F为M的闭子流形的不交并.当F=P(6,2n+1),n为奇数时,我们证明了(M,T)协边于零。
设Mn是n维光
网络技术已广泛渗透于人类生活的各个领域,信息交流日渐频繁,人类社会步入了数字化时代。数据信息的交流使得它成为人类社会在信息利用方面重要的工具,所以通过网络安全传输
近年来,对随机种群扩散系统的研究引起了许多专家、学者的广泛关注,通常情况下,大多数随机种群扩散系统没有解析解,带poisson跳、Markov调制的随机种群扩散系统也是如此,因此,对随
分析以往针对教育系统建立的模型发现,以前所建立起来的模型,往往只是针对教学质量,在对教育创新扩散过程进行的研究方面还很欠缺。而微分方程模型在种群生态学和工程技术领
本文研究以下四阶强阻尼非线性波动方程的初边值问题utt-△u+△2u+μut-α△ut-△utt=f(u),μ,α>0,χ∈Ω,t>0,u|t=0=u0,ut|t=0=u1,χ∈Ω,u|aΩ=0,其中Ω是Rn中的有界开集,且
股票市场是一个高度复杂的动力学系统,基于股票间的相关性研究对掌握其内在结构和演化规律具有重要的价值。随机矩阵理论(Random matrix theory,RMT)在核物理、混沌系统以及无线通信等领域具有非常广泛的应用。通过将随机矩阵理论引入到股票市场,发现相关矩阵中确实蕴含着大量的噪声信息,同时学者们还提出可利用RMT对股票市场进行过滤,其去噪方法主要有LCPB法(Laloux L,Cizeau