宽幅高分辨热像仪几何定位关键技术研究

来源 :中国科学院大学(中国科学院上海技术物理研究所) | 被引量 : 0次 | 上传用户:shqcd992
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高时效、高分辨率的热红外遥感影像是研究人类痕迹精细刻画,地表特征反演、资源勘查、及海洋生态监视等领域的重要资源。CASEarth小卫星是我国“地球大数据科学工程”专项支持的首颗卫星,其搭载的核心载荷红外热像仪可获取地表300Km幅宽30m分辨率的三谱段热红外数据。常用的线阵遥感相机数据获取方式主要有长线列推扫和短线列摆扫两种,但受卫星结构尺寸、重量、及功耗等工程边界条件约束,长线列推扫的成像方式难以满足短时相、大幅宽、高分辨的需求。长线列摆扫是解决这一矛盾的有效手段,但由于积分时间缩短、几何定位模型参数增加,增大了高灵敏度、高精度几何定位的困难。本论文针对于我国幅宽和分辨率比最大的热红外载荷CASEarth卫星热像仪,开展了多模块拼接的2000元三谱段并列摆扫式相机高精度几何定位方法研究,建立了长线列摆扫式热像仪严格几何定位模型,提出了地面物像的精确测量与解算方法,并验证了在轨解算的可行性,解决了影响其定标精度的热红外影像控制点提取难题,实现了基于光迹追踪及DOM、DEM参考数据的大幅宽高分辨在轨影像仿真,并通过仿真数据,验证了严格几何定位模型及所提几何检校方法的有效性。本文的主要研究内容及创新点总结如下:1.基于CASEarth小卫星的轨道参数与宽幅高分辨热像仪的结构及成像特点,介绍了热像仪内、外方位模型的相关坐标系及其转换关系,构建了宽幅高分辨热像仪的严格几何定位模型,分析了模型中各输入参量对定位结果的影响及其在模型解算中的作用;最后,以严格定位模型为依据,系统地讨论了各个误差源对影像几何定位精度的影响,为宽幅高分辨热像仪成像仿真及几何处理奠定了理论基础。2.摆扫式热像仪扫描镜安装矩阵,相机内参等几何定位参数受发射过程力学、在轨温度场等因素的影响,需在轨重新进行标校。本文分析了摆镜误差、主点主距误差、探测器拼接模块旋转和平移、及焦平面倾斜等因素的影响,构建了多模块拼接的长线列摆扫式热像仪的自校正模型,提出了基于最小二乘理论的长线列摆扫式相机物像模型解算方法,并基于实验室测试数据,实现了优于0.3像元的物像模型标定精度,验证了在轨时基于地面控制点及所提模型进行物像高精度解算的可行性。3.针对热红外影像对比度低,灰度映射差异性大及高维图像特征不明显等导致的地面控制信息获取困难的问题,提出了一种基于几何纹理模式的热红外影像地面控制点提取方法。该方法充分利用遥感影像本身大量的几何纹理信息,采用Moravec算法、Sobel算子、自适应滤波及形态学处理等方法提取纹理显著的局部特征模式;针对获取的纹理模式图,构建了一种基于Log-polar变换的几何纹理描述符,有效避免了传统控制点提取算法对特征点及其周围梯度信息的依赖;同时,针对传统的相似性匹配中存在的误匹配较多的问题,提出了一种基于匹配位数及位匹配误差双重约束的误匹配剔除方法,通过描述符的循环移位,实现了特征匹配过程中的极值寻优,极大地减小了误匹配对控制点数据库精度的影响。4.针对宽幅高分辨热像仪在轨影像缺乏的问题,根据热像仪轨道参数、严格几何定位模型、参考影像以及DEM数据,提出了一种基于光迹追踪的长线列摆扫式相机在轨成像仿真方法,实现了任意时刻、任意位置的在轨影像仿真。同时,根据热像仪几何定位模型,构建了基于“广义”修正矩阵的长线列摆扫式相机几何检校模型,并通过高精度的地面控制点,采用先外后内的解算方法对模型参数进行了检校,最终实现了优于2像元的定位精度,验证了严格几何定位模型及所提检校方法的有效性。该研究可为长线列摆扫式遥感相机在轨几何处理技术提供有益参考。
其他文献
窄禁带半导体是禁带宽度小于0.5 eV的半导体。其较窄的禁带宽度带来了诸如高非抛物系数、更容易的碰撞离化与更大的带到带隧穿等独特的性质。特别是碲镉汞这类典型的三元合金窄禁带半导体还具有较大的合金散射、单载流子雪崩等独特性质。在很多需要微弱光信号探测的领域,雪崩光电探测器都有重要应用,比如:遥感、主被动联合探测、激光雷达、量子通信和天文观测等。然而,目前雪崩理论主要是基于Si、Ge等禁带宽度相对较宽
碲镉汞由于其高量子效率、高工作温度范围、禁带宽度连续可调、电子迁移率高等优点成为高速、高分辨率、高光谱探测应用领域最具竞争力的红外探测材料。随着第二代碲镉汞红外焦平面技术逐步进入实用化和产品化,第三代碲镉汞红外焦平面技术的研究也随之展开。当前,红外探测系统的发展方向是更小尺寸(Size)、更低重量(Weight)、更小功耗(Power)、更低价格(Price)和更高性能(Performance),
红外偏振探测可增强微弱目标的探测,大幅抑制云雾和杂散光的干扰,提高目标清晰度,在遥感探测、气象监测、抗干扰成像、分子手性检测和空间光通信等领域具有重要应用。在多种红外偏振探测途径中,片上集成的像元分离型偏振探测器可实时对目标探测,避免机械运动,具有结构简单,稳定性高,集成化,小型化的优点。圆偏振探测在抑制云雾以及杂散光的气象监测、手性分子检测和空间光通讯等领域具有重要应用。但是,新型的微型圆偏振器
单光子探测在激光雷达三维成像、激光测距、荧光寿命成像、激光通信等领域具有广泛应用前景。工作在盖革区的雪崩光电二极管,单个光子即可触发二极管雪崩,产生雪崩电流,是一种很好的单光子器件。基于盖革雪崩光电二极管(GM-APD)焦平面的单光子探测系统具有灵敏度高、探测距离远、测距精度高等特点,它通过计量光子飞行时间实现距离探测。集成时间-数字转换电路(Time to Digital,TDC)的读出电路(R
红外探测系统的重要发展方向之一是“SWaP”,也就是更小的体积、更轻的重量和更低的功耗。而红外光电探测器由于禁带宽度窄,一般工作在液氮温区,制冷系统是带来探测系统体积功耗的主要原因。因此,提高红外探测器的工作温度并且降低制冷系统的功耗和体积,可以推动红外探测技术在便携式手持装备等小型化设备方面的发展和应用。红外探测器在高工作温度下面临的两个主要问题:首先,探测器的暗电流是温度的指数函数,随着温度的
碲镉汞红外探测器具有波段覆盖宽、灵敏度高等优越性能,是航天遥感、天文科学等领域的红外探测的首选。随着红外探测与成像的空间分辨率不断提升,红外探测器规模不断扩大,但因其低温热失配引发的可靠性问题愈加严重。为此,本文重点开展大面阵芯片面形校正、低热应力结构设计等可靠性技术研究,具体研究内容如下:1.实现了大面阵红外焦平面探测器的结构优化设计。通过对探测器的结构尺寸进行优化以及材料参数合理选择等方法来减
近年来,超大规模线列红外焦平面探测器组件在气象、资源、环境及天文等领域有着重要的应用。受背景噪声抑制的限制,红外探测器往往需要在100K以下的低温工作。随着系统应用对大视场、高空间分辨率及高时间分辨率等需求的不断提高,单个探测器模块规模的发展已不能满足设计指标要求,需要将几个甚至几十个探测器模块在杜瓦组件内集成,而探测器模块的热匹配性、组件杜瓦的传热及轻量化等问题凸显。因此,发展超大规模线列红外焦
科技发展的本质是人类不断探索和认识世界的过程。红外天文探测器是人类探索外太空世界的有力工具,其重要性不言而喻。阻挡杂质带(Blocked Impurity Band,BIB)红外探测器凭借其优异的探测性能,已成为目前中、远红外天文探测领域的主流探测器,被广泛应用于各种大型天文探测平台上,如宇宙背景探测器(Cosmic Background Explorer,COBE)、斯皮策(Spitizer)太
红外热像仪是CASEarth小卫星的载荷之一,在505km轨道高度通过长线列摆扫实现30m分辨率和300km幅宽,是我国目前在研幅宽分辨率比最大的热红外载荷。CASEarth卫星红外热像仪发射入轨后,将为人类活动范围、经济发展情况的探测、污染(水、土和大气污染)监测与生态功能评估、水资源和耕地普查等提供高分辨率的热红外遥感数据。高精度的辐射定标是遥感数据定量化应用的关键。红外热像仪的辐射定标精度受
焦平面探测器是成像系统的核心部件,是实现探测、识别和分析物体信息的关键,在军事、工业、交通、安防监控、气象、医学等各行业具有广泛的应用。在航天工程和宇宙探索等需求的牵引下,红外成像探测器向大规模、多波段、高温等方向发展。受材料、器件工艺、成品率等因素的限制,单个焦平面模块还不能满足红外遥感等系统的需求,通过多芯片、模块化拼接成更长线列或更大面阵的方式,已经成为实现长线列和大面阵探测器组件的技术途径