论文部分内容阅读
粗合成气携带飞灰气流床气化技术作为一种先进的气化技术,能解决流化床粗合成气中飞灰可燃物含量较高的问题,该技术通过将飞灰进行二次气化,可协同实现粗合成气脱除飞灰和飞灰气化利用,并且作为独立的合成气后处理技术,能够耦合不同炉型和不同处理能力的流化床气化炉,经济实用,具有很高的发展前景。飞灰气化烧嘴中外部气化剂与粗合成气之间的混合流动特性对新型飞灰气化烧嘴的设计以及粗合成气携带飞灰气流床气化技术的发展都具有重要意义。国内某化工厂单台处理合成气量为80000Nm~3/h粗合成气携带飞灰气流床气化炉目前处于试验调试阶段,为解决该型气化炉在运行过程中存在的烧嘴结渣问题,哈尔滨工业大学提出一种新型、高效的飞灰气化烧嘴。本文搭建了与原型比例为1:2.5的飞灰气化烧嘴单相冷态模化试验台,利用热电偶以及IFA300恒温热线风速仪等设备研究射流夹角以及外部气化剂风速对飞灰气化烧嘴中外部气化剂与粗合成气之间交叉射流混合特性以及流动特性的影响,为其工业运用提供理论指导。通过飞灰气化烧嘴混合以及流动试验可知,外部气化剂与粗合成气交叉混合过程中,外部气化剂的射流轨迹呈“喇叭状”扩散,两股气流间的混合剧烈程度随着混合过程的进行呈现逐渐衰减的趋势,混合速度也降低,在混合的初期速度衰减迅速,在外部气化剂射流上边界附近存在回流区。在相同外部气化剂风速条件下,单相混合试验表明,随着射流夹角从50°增大到90°,外部气化剂与粗合成气之间的混合初始位置从Y=20mm(Y为沿着射流方向到烧嘴出口端面的距离)处提前至Y=0mm处。射流夹角从50°增大到70°时,各截面处临界燃烧浓度面积比和轴向最大混合速度大幅增大,径向最大混合速度差别较小;当射流夹角从70°增大到90°时,各截面处临界燃烧浓度面积比和轴向最大混合速度差别较小,径向最大混合速度大幅减小。在外部气化剂风速75m/s条件下,射流夹角50°、70°、90°的工况在Y=70mm截面处的临界燃烧浓度面积比分别为19.46%、31.27%、36.99%,轴向最大混合速度峰值分别为3.13、8.31、7.32。单相流动试验表明,随着射流夹角的增大,相同Y值处外部气化剂射流中心所到达的下冲深度增加,外部气化剂气流最大速度相对比的峰值分别在Y=20mm、Y=10mm和Y=0mm,外部气化剂射流中心轨迹更加靠近烧嘴出口。射流夹角90°工况,粗合成气与外部气化剂的混合发生在烧嘴喷口处,容易烧损烧嘴。综合考虑,推荐射流夹角为75°。在相同射流夹角条件下,单相混合试验表明,随着外部气化剂风速从30m/s增大到90m/s,外部气化剂与粗合成气的反应初始位置不变,各截面处临界燃烧浓度面积比呈现先增大后减小的趋势,在气化剂风速为75m/s时临界燃烧浓度面积比最大,当射流夹角为70°,临界燃烧浓度面积比在Y=70mm截面为31.27%。沿着粗合成气射流方向,轴向最大混合速度呈现先增大后减小的趋势,径向最大混合速度呈现逐渐减小的趋势。在射流夹角70°时,气化剂风速为75m/s和90m/s的轴向最大混合速度峰值(8.31和8.42)远大于其他角度。单相流动试验表明,随着气化剂风速从30m/s增大到90m/s,在相同Y截面处气流下冲深度增加,外部气化剂射流中心的轨迹更加靠近气化烧嘴出口。综合上述试验,推荐外部气化剂风速75m/s。