论文部分内容阅读
高强度胶管用钢丝绳主要用于橡胶骨架的增强材料,其中钢丝绳的原材料、力学性能、微观组织及捻制过程都将对胶管的性能产生影响。本文以高碳钢丝冷拉拔为研究对象,研究了不同原材料成分、热处理工艺、拉拔工艺及捻制参数对钢丝力学性能的影响。采用扫描电子显微镜(SEM)观察高碳钢丝的横截面显微组织和纵截面显微组织在拉拔过程中的演化规律,研究了钢丝在拉拔过程中的加工硬化行为,获得了抗拉强度超过2600MPa,扭转值超过40次的0.53mm钢丝的拉拔工艺参数。通过研究不同热处理工艺下冷拉钢丝的力学性能,优化了冷拉高碳钢丝的热处理工艺。不同道次压缩率的拉拔模链对钢丝力学性能的影响研究表明平均道次压缩率为12.8%的钢丝力学性能最优。随着拉拔变形量的增加,横截面上珠光体片层间距逐渐减小,在拉拔变形量增加的同时,珠光体片层的扭转角度以及弯曲程度越来越明显,甚至出现片层碎化、断裂现象。纵截面上珠光体团取向逐渐与拉伸轴方向趋于一致,形成平行于拉拔方向的层状组织,并逐渐细化。高碳钢丝的抗拉强度与真应变呈双线性关系。基于修正的Ludwik模型可以定量反应加工硬化过程中的应力-应变行为,物理意义明确的Hollmon模型参数可以通过应变硬化系数K和应变硬化指数n来描述拉拔过程冷拔钢丝拉伸性能的变化,该两种理论模型结合起来可有效地描述高碳冷拔钢丝的加工硬化规律。1×24DW-3.50mm捻制工艺的钢丝绳综合性能最优。钢丝绳在橡胶中拔脱过程中,断裂面基本上在橡胶中扩展;硫化试样的橡胶断裂表面较粗糙存在较多的撕裂棱,而老化试样橡胶断裂表面比较平滑,且断面上附有较多的橡胶粉末,还可观察到橡胶垂直于主断面的撕裂现象。橡胶老化导致弹性损失、脆性增大,并使断裂面表面积减小,是引起钢丝绳与橡胶粘合力下降的原因。实践已证明,采用本结构参数和生产工艺条件制造的开放式钢丝绳,各项指标已达到或超过国外同类产品,将会产生巨大的经济效益。