【摘 要】
:
激光等离子体尾场加速(Laser Wakefield Acceleration, LWFA)是一种新型的电子加速方式,与传统加速器相比,其加速梯度大,设备体积小。目前实验一般使用的大功率激光(PW)作为驱动光,得到GeV高能电子束,但重复频率较小(1~10Hz)。近年来,为了提高电子束重复频率至千赫兹,将激光脉宽压缩到少周期量级,使用毫焦、kHz重复频率激光作为驱动光,得到MeV量级电子,用于超快电子衍射实验,可将其时间分辨率提高到小于十飞秒量级,同时也可用于提高泵浦-探针实验的精细度。
文章使
论文部分内容阅读
激光等离子体尾场加速(Laser Wakefield Acceleration, LWFA)是一种新型的电子加速方式,与传统加速器相比,其加速梯度大,设备体积小。目前实验一般使用的大功率激光(PW)作为驱动光,得到GeV高能电子束,但重复频率较小(1~10Hz)。近年来,为了提高电子束重复频率至千赫兹,将激光脉宽压缩到少周期量级,使用毫焦、kHz重复频率激光作为驱动光,得到MeV量级电子,用于超快电子衍射实验,可将其时间分辨率提高到小于十飞秒量级,同时也可用于提高泵浦-探针实验的精细度。
文章使用PIC模拟代码Osiris进行三维粒子仿真模拟,使用了5.4fs,1.6mJ的激光作为驱动光产生等离子体尾场,输出了5MeV能量,~10fs的准单能电子束。通过研究空泡非对称性结构的演化过程,和少周期激光载波-包络相位(carrier-envelope phase, CEP)的漂移周期,我们发现激光的CEP快速、周期性的变化会调制空泡出现摆动现象,在这个过程中激光红移和等离子体负色散起到了重要作用,无法忽略,在这基础上又进行了一系列模拟,来进行验证。而空泡的周期性摆动,又会促进背景电子的自注入,在一个摆动周期内,有两次电子注入,分别来自于空泡的上半部分和下半部分,与空泡摆动的特定形状相对应,都基本上是以激光CEP变化2π为周期的。
这种周期性注入电子的机制是一种新的注入机制,来源于激光CEP变化调节空泡导致的空泡周期性摆动。且每次注入是间隔开的,空泡每个摆动引起注入的粒子束脉宽都很短,若能在在错相效应发生前出射,可利用速度差异将其分开,有望得到亚飞秒量级脉宽的电子束。
其他文献
激光超声因具有非接触、高精度、宽频带等优势,已初步应用于光声成像及工业探伤等领域。然而,由于激光直接作用到待测样件所产生的超声波强度低,导致其探测灵敏度差。因此,高光声转换效率的复合材料应运而生,该材料由金属材料或碳基材料再结合聚二甲基硅氧烷(PDMS)材料组成。当激光辐照到复合光声转换材料产生高强度超声波再耦合至待测样件,可获得高强度的超声信号输入。然而,目前学者们主要通过不同层间材料组合来构建
近年来,电子产业对更小,更快,更轻,更便宜和更灵活的设备的市场需求不断增长。自2004年首次发现石墨烯以来,石墨烯因其独特的形态,以及优异的物理、化学、机械和光学性能,引起了科学界的广泛兴趣。石墨烯具有结构稳定、导电性高、韧度高、强度高、比表面积极大等突出的物理化学性质。这不仅为基础科学研究,而且为电子产业提供了一个新的材料平台。以可靠的和成本低的方式生产高质量的石墨烯已变得至关重要。然而传统的固相、液相剥离法等石墨烯制备方法往往只能获得微米级尺寸的高品质石墨烯,且制备成本高昂,难以大规模工业量产。此外,
随着智能制造的日益发展,三维测量技术在工业生产中的作用已经越来越关键,基于线结构光的激光三维测量技术凭借其非接触性、精度高、实时性良好等特点受到越来越多的研究者的关注,在农业、工业自动化、文物保护、医疗行业等应用领域基于线结构光的三维测量技术正发挥着重要作用。本文研究了应用于两种不同测量尺度的三维测量系统,对线结构光三维测量系统中的结构设计和关键算法等进行了深入研究,使用C++利用MicrosoftFoundationClasses(MFC)和OpenCV库实现了三维测量算法和系统的软件界面,具体研究工作
【摘 要】近年来,商州区松扁叶蜂大量发生,我们采取了人工喷雾、烟剂熏蒸等措施,但因山大沟深,防治难度大,防效不理想,为了遏制松扁叶蜂的危害,今年采取了飞机防治,速度快、防治效果非常明显。 【关键词】飞机防治;噻虫啉;白僵菌;松扁叶蜂 商州区自上世纪70年代以来,栽植了大面积的油松纯林,目前油松林面积达10.9万hm2,松扁叶蜂在该地区发生面积达2.9万hm2,成灾面积0.9万hm2,虫口密度达
高折射率介质材料的光学损耗低,支持具有强磁响应的米氏共振(Mie resonances),可同时实现近场增强和远场辐射调控,在共振纳米光子学等领域展现出良好应用前景。尽管近期在介质材料方面的研究已发现许多新的现象,但仍需要进一步深入研究理解介质纳米结构中的电磁场行为,并且还需要进一步发展多样化的纳米尺度的制造技术。本文从米氏共振出发,在理论计算方面,研究了磁多极模式对近场和散射谱的作用,并将其应用到卤素钙钛矿纳米粒子的辐射增强效应中,研究了磁多极的辐射增强与载流子寿命的关系,还探讨了电、磁多极模式对远场辐
近年来二维材料吸引着越来越多研究者的关注,由于其独特的物理性质,二维材料各种高新领域展现出巨大的应用潜力。由于二维材料的应用对晶体质量有着非常高的要求,所以准确评估二维材料的晶体质量至关重要,常用的表征手段(拉曼光谱、电子扫描显微镜、原子力显微镜等)为我们研究材料的各种特性提供了工具,但每种手段的表征能力有限,对材料性质的探寻需要多种手段才能完成,过程繁琐,没有一种完美的表征方法来提供所有的答案。而非线性光学为我们提供了一种思路来简化这一难题,非线性光学作为现代光学的一个分支现在已经发展为一项关键的技术,
随着太阳能等间歇式可再生能源的大规模应用和电动汽车等领域的快速发展,高效安全的储能系统显得尤为重要。锂硫(Li-S)电池由于其高的理论能量密度(2600 W h kg-1)和低廉、易得的硫正极材料,被认为是极具发展潜力的下一代高比能储能系统。然而,锂硫电池中硫的低导电性,充放电过程中严重的极化和大的体积膨胀,以及中间产物可溶性多硫化物造成的“穿梭效应”,导致了低的硫利用率、快速容量衰减和差的库伦效率,制约了其商业化应用。针对上述问题,本论文设计合成了几种不同钼基化合物/碳纳米片自组装空心球(MoxZy/C
AlGaN基深紫外发光二极管(DUV-LED)具有低电压,全固态,耐冲击,耐高温,抗辐射,高效率,响应快,长寿命,无毒环保和光谱连续可调等特点,在紫外消毒杀菌、非视距通信等民用和军用领域具有广阔市场和应用前景。但是,在倒装芯片制备方面,常用的金属电极会吸收量子阱产生的深紫外光,导致光提取效率低下的问题。应用高反射率金属电极,可以显著提高芯片的光提取效率,是未来实现高光提取效率DUV-LED的关键。同时,高Al组分的DUV-LED芯片存在电流拥堵现象,导致芯片发热增多,可靠性降低。目前,优化芯片电极版图设计
CO2激光由于具有可高效率消融软硬组织的特点,成为微创硬组织激光手术的首选。然而,柔性传输介质的缺失限制着CO2激光在微创硬组织手术中的应用。中红外光纤由于高灵活性与小型化成为新一代柔性CO2激光传输方式的选择。硫系玻璃在1.5-20μm具有优异的红外透过性能且易于制备。基于双坩埚法、薄膜卷绕法结合热拉伸法的多材料纤维制备技术可提供同时具备优异光学性能与机械性能的中红外纤维。本论文旨在通过不同玻璃材料的热匹配测试选取并制备不同组分的中红外玻璃;设计纤维结构与模具;最终通过多材料纤维制备方式制备可用于CO2
我国的城市化迅速,地铁可以很好的解决城市交通阻塞的问题。然而,利国利民的地铁工程存在着各种安全隐患,研制快捷、高效的检测隧道病害的设备刻不容缓。其中,反映隧道安全问题较为综合的病害是隧道壁表面裂缝和隧道断面形变。
目前,地铁安全检测设备的性能参差不齐:有的还是比较传统的人工方法,只能对地铁隧道进行单点检测,不能对地铁隧道做一个全面检查,效率也比较低下;有的是或引进、或自研的自动化检测设备,然而其成本比较高,可以检测的病害不齐全。论文源于研制一种地铁隧道安全光电综合检测系统的项目,该检测系统集隧道