【摘 要】
:
生成对抗网络(GAN)作为一种深度学习模型,凭借可以在训练阶段提取真实图像和生成图像丰富特征的优势,正逐渐被应用于监督和半监督的图像识别中。本文围绕GAN模型图像识别精度的提升,在原始GAN模型的基础上做了以下工作:(1)原始GAN模型对图像特征的提取在一定程度上依赖判别器自身的学习,导致其提取到的数据特征与真实数据特征之间存在一定的偏移,影响了GAN模型图像识别的精度。针对这个问题,本文在原始G
论文部分内容阅读
生成对抗网络(GAN)作为一种深度学习模型,凭借可以在训练阶段提取真实图像和生成图像丰富特征的优势,正逐渐被应用于监督和半监督的图像识别中。本文围绕GAN模型图像识别精度的提升,在原始GAN模型的基础上做了以下工作:(1)原始GAN模型对图像特征的提取在一定程度上依赖判别器自身的学习,导致其提取到的数据特征与真实数据特征之间存在一定的偏移,影响了GAN模型图像识别的精度。针对这个问题,本文在原始GAN模型的基础上添加一个编码器结构,对真实数据进行特征提取,并加重真实数据的权重,以此改善GAN模型提取的数据特征与真实数据特征之间的偏移问题。(2)原始GAN模型的训练需要大量的标签数据,而现实生活中标签数据往往难以获得或者数量较少,不能为模型提供足够多的训练数据。针对这个问题,本文在(1)所述的改进模型中导入了半监督方法,对其进行半监督式的对抗训练,使其在仅使用少量标签数据时就能够提高模型识别的精度。本文给出了导入半监督机制模型的结构,并详细描述了生成器、编码器和判别器的结构及相互关系,说明了该模型的训练过程。并在MNIST、CIFAR-10和Fashion-MNIST三个数据集上对该模型进行了验证,实验结果表明:与GAN模型的其他衍生模型相比,本文改进后的模型有效提升了图像识别的精度。(3)为了进一步验证该改进模型在实际应用中的有效性,选取医学影像——脑梗MRI图像进行实际应用中的图像识别。实验中,设置的带标签样本分别为25、50、100、250、600、1200,与大量的无标签数据进行训练,以此实现对脑梗MRI图像数据中病变部位的识别。将实验结果分别与其他监督、半监督模型以及GAN的衍生模型进行了对比,结果证明本文所提模型在具体的应用上能够获得更好的识别精度。
其他文献
随着柔性制造系统和智能仓储系统的快速发展,自动导引车(Automated Guided Vehicle,AGV)的应用需求日益增长。AGV是一种装备有电磁学或光学等传感器的自动导航装置,能够装载货物沿规定的导航路径行驶。为了提高AGV作业效率,降低运输成本,本文针对仓储环境提出基于强化学习的AGV路径规划方法。针对单AGV路径规划,提出了一种强化学习-蚁群算法。针对蚁群算法在某些情况中的缺陷,将强
高光谱图像包含丰富的图像与光谱信息,是典型的高维数据。高光谱图像分类是特征提取与地物解译的重要内容。研究人员可以通过分类的结果了解农业、环境和区域的变化并采取相应的措施。Potts模型是半监督变分分类模型,为数据分类提供了通用的理论框架,可拓展解决高维数据分类问题。同时,该框架能够融合非局部方法、约束优化方法实现高精度高性能数据分类,进而提高对高光谱图像分类的准确度和计算效率。本文基于Potts理
人脸是人体非常重要的生物学特征,人脸检测、人脸分割等人脸处理技术目前已广泛应用于安全、通信、医疗等领域,具有深入研究的实际意义。人脸分割的目的是找到人脸的轮廓,从而将人脸与图像背景分离。人脸分割作为多种应用的基础算法,对精度有很高的要求。由于姿态、脸型、发型遮挡、拍摄角度等原因,图像中的人脸的轮廓有很大的几何差异,这些因素影响分割精度。目前依然存在人脸检测不准确造成的人脸分割不精确问题,以及难以精
问答系统是近年来自然语言处理、信息检索等领域研究的热点。相对于传统搜索引擎只能得到繁琐且模糊的信息,问答系统可以返回给用户更加精准的答案。知识图谱可以将碎片化的知识通过三元组的方式组织起来,建立数据间的联系,形成网络,更有利于信息的搜索、挖掘和分析,因此基于知识图谱的问答系统(Knowledge Based Question Answering,KBQA)成为越来越多人的研究对象。但是目前对于KB
随机共振的出现颠覆了人们对噪声的认知,通常噪声被认为是信息在传输过程中产生的无规则信息,这种无规则信息干扰我们对原始信息的提取和利用,噪声的存在严重影响了数据的质量。随机共振效应的提出,为噪声的处理提供了一种新思路。随机共振效应在神经元中普遍存在,但如今对神经元中随机共振的研究较少,本文将随机共振效应与神经元系统相结合,针对弱信号增强和低峰值信噪比图像复原问题,提出了基于随机共振的神经元模型,主要
文本检测任务旨在用相关算法从文档或场景图像中定位出所包含的文本区域,该任务可作为各类计算机视觉任务的前置模块。现有的基于深度学习的方法克服了凭借经验手工设计特征的弊端,具有更强的特征学习能力,进而在工业和学术界大范围落地,然而当前的方法受到通用目标检测和语义分割框架的限制,检测器中的主干网络与文本特征不匹配,特征金字塔路径冗长,相邻文本判别算法效率低,文本结构特征保留能力弱等问题仍限制检测器的性能
中国象棋作为休闲和益智的一款游戏,流传至今,在伴随科技进步的同时,基于识别的机器人技术得到了很大发展,人机象棋博弈的相关研究也热度增加。当前,人机象棋走棋多为空间移动,为提高人机设备场地适用性,平面移动条件下的人机象棋博弈不可或缺,本文通过研究人机象棋相关方面理论,实现了一种基于平面约束条件下的人机象棋智能控制系统。其控制过程主要通过以下四个方面实现。第一、人机象棋系统棋子定位与识别。由机器视觉获
实例分割任务主要是将图像中的几种类别区分并检测标记出来。在基础卷积神经网络的基础上,对模型进行改进。当前的实例分割算法无法分割两个高度重叠的对象,之前的实例分割算法基本都是对图片的目标进行检测,然后在生成的检测框的基础上进行实例分割,这样可能会导致两个非常近的人无法区分出来。本文发现利用人体骨骼的特殊性能够更好的把图片中的人精准的分割出来,从而避免了候选框所带来的漏检情况,并且本文提出了两种全新的
步入21世纪后,中国经济发展势头强劲,一跃成为全球第二大经济体。但在快速经济发展的同时,国内能源问题也日益突出。根据去年全球能源使用情况调查数据显示,中国已成为能源消费最大的国家之一。为了缓解能源枯竭带来的危机,中国政府连续多年出台政策,对工业、建筑业和交通业三个能耗巨头的发展提出了一系列可持续发展的新要求。以建筑行业为例,每年建筑能耗使用占比超过了社会各行业总能耗的三分之一,且针对于建筑方面的节
近年来,中国经济发展迅速,城市现代化水平不断加深。然而,交通车辆保有量的急剧增加给城市交通运行带来了巨大的压力。出租车、公交车等公共交通工具的精准时间预测,不但能够利于人们对行程进行合理规划,节约时间,而且能缓解交通拥堵现象,避免人力、能源等浪费,进而给城市的规划建设提供重要参考。交通车辆通行时间预测研究已经成为智能交通领域的热点问题之一。然而,传统的研究方法无法充分提取各轨迹路径之间的时空特性,