【摘 要】
:
当前随着区块链技术的迅猛发展,区块链机器共识的可靠性日益受到全球各个国家和企业的广泛重视和应用。在中国,区块链技术已经被中央政治局提升到“核心技术自主创新的重要突破口”,以及被国家部委加入“新基建信息技术基础设施”的国家战略高度。很明显区块链技术的重要性越发突出,未来可能会被广泛应用于各行各业。国内很多科技企业都积极关注和发展区块链技术,致力于能在区块链领域有所创新,致力于更深度的区块链落地应用,
论文部分内容阅读
当前随着区块链技术的迅猛发展,区块链机器共识的可靠性日益受到全球各个国家和企业的广泛重视和应用。在中国,区块链技术已经被中央政治局提升到“核心技术自主创新的重要突破口”,以及被国家部委加入“新基建信息技术基础设施”的国家战略高度。很明显区块链技术的重要性越发突出,未来可能会被广泛应用于各行各业。国内很多科技企业都积极关注和发展区块链技术,致力于能在区块链领域有所创新,致力于更深度的区块链落地应用,把区块链作为一种有效的工具手段来使用,希望它能够解决更多业务问题,促进企业成本下降、效率提升、更加安全、创造更多的价值。本文所研究和设计的灵感来源某银行网点播控系统,在此应用场景下,结合了区块链自身的网络特性,构建了基于Hyperledger Fabric架构的网点信息播放系统。该系统通过现有平台技术和区块链技术的互补性融合,无论在性能方面还是在功能方面都优于原系统。本论文主要工作如下:第一,搭建了基于区块链的网点播控系统,系统基于Hyperledger Fabric底层技术架构为依托构建的区块链网络环境。通过Docker虚拟化技术让节点运行在容器中,通过P2P网络协议实现各种节点间的相互通信与数据传输。第二,提出并设计了“轻节点+客户端”的网络模型,让轻节点服务直接和区块链网络节点交互,客户端原则上直接和轻节点服务交互。这个设计的优点是,避免因为客户端过多导致区块链性能压力变大,轻节点起到缓冲的作用,使系统实现高并发高可用。第三,设计了区块链链下存储的网络模型,系统播控文件存储在IPFS(基于内容寻址的文件系统)上。IPFS具有内容寻址和区块链防篡改的特性,可以有效地解决区块链链上存储造成的资源浪费和性能下降的问题。第四,提出了管理端权限模型RBAC和Fabric-Ca证书授权体系的绑定方案,使管理端用户也可以基于成员身份实现访问控制、操作和查看区块链数据。最后,本文基于Hyperledger Fabric联盟链设计并实现了一个自主可控的网点信息播控系统,包括管理端子系统、区块链服务子系统、IPFS链下存储服务子系统、客户端APP应用子系统。通过功能和性能测试,表明系统具有良好的可扩展性、强壮性、灵活性和安全性。希望本文可以为后续网点播控领域区块链实践落地的研究上,提供一点微薄之力。
其他文献
车标识别为智能交通系统提供技术支撑,在智能交通业务应用中高效、准确识别车辆起着重要的作用。实际生产环境下的车标图像存在光照不均、车标倾斜,污损及复杂背景等影响因素,车标识别一直具有很大的挑战。传统的车标识别算法,主要以手工设计特征为主,缺点是:算法抗干扰能力有限,鲁棒性不高,不能准确有效的进行车标定位和分类。与手工设计特征相比,基于神经网络的车别识别算法在解决复杂环境的车标定位和车标识别问题具有极
口语理解作为任务型对话系统的第一个流程,在对话系统领域中具有重要的研究意义。目前,对于口语理解任务的研究多基于深度学习方法,在每个对话领域都需要大量的标注对话数据来支撑模型的训练,因此带来相当大的数据成本。而针对数据问题被提出的小样本学习目前还处于初级阶段,主要应用在图像分类任务中。本文将小样本学习方法应用于口语理解任务,对于口语理解的两个子任务——意图识别和语义槽填充分别提出了适用于小样本数据的
随着互联网的快速发展以及人们对教育需求的不断增长,2012年出现了大规模在线开放课程这种新型的在线学习模式。伴随着大规模在线课程平台的快速发展,任何人均可上传课程到平台上来,课程数量不断增加且教学内容存在大量冗余,出现类似电商平台的信息过载问题;同时,由于在线开放课程平台缺少清晰的学习架构引导用户制定学习策略,用户难以从海量数据中选择适合自己的课程。因此,本文旨在利用推荐系统,分析用户的历史行为,
面向电子病历的临床术语标准化是将电子病历中的临床诊断实体对应到标准知识库中的标准实体。临床诊断实体的标准化描述主要采用国际疾病分类编码规范(International Classification of Diseases 10,ICD-10)。临床术语标准化是医学自然语言处理中的重要研究课题,是对临床医疗文本进行后续挖掘和分析的基础。目前英文临床术语的标准化研究较为深入,但是中文领域的相关研究相对
在当今科技迅猛发展的时代,智能制造技术所具有的先进性和复杂性更加体现在了现代工业生产过程中,市场竞争也更加激烈,这种复杂的市场环境给制造企业带来了巨大的挑战。科学合理的生产计划和排产调度,对于降低产品成本、提升企业经济效益会产生巨大的作用。因此,对于智能工业制造企业而言,优化车间调度方法是目前的一个研究热点。在智能工业产品零部件制造过程中,企业不仅要考虑到工件的冲压加工工序,为提高产品的强度和韧性
随着汽车保有量的不断增长,智能交通已经深入我们的日常生活,车牌检测作为智能交通中重要的组成部分同样得到了飞速的发展,为城市公共交通的规划与出行带来了极大的便利。由于汽车所处环境极其复杂,为车牌检测识别带来了很大的困难,通过分析大量车牌数据得出光照是影响车牌检测识别的主要因素。通过对车牌识别场景中的实际问题和车牌图像的数据特点的分析,本论文以卷积神经网络为基础框架,重点研究车牌识别过程中的低光照增强
随着互联网技术的日益普及和医学文献数量的快速增长,医学文献数据量呈现爆炸式增长,但大量医学文献数据大多以结构化方式存储,有着不易提取,人工标注成本高昂等特点。在医学文献中,文献摘要记录着重要信息,如何根据大量的医学文献摘要抽取重要的循证医学数据,并分析从而开发合成新的药物来治疗疾病变得愈发重要。医学文献命名实体识别,作为自然语言处理的基础和重要的任务,可以从非结构化的医学文献中抽取规范的实体,可以
随着当今社会信息化和智能化的迅速发展,利用计算机实现以人为中心的各类分析成为了可能。在人机交互、视频监控、医疗防护等应用场景中,准确的人体解析、姿态估计以及进一步的行为识别都是至关重要的。本文使用深度学习的方法,通过对现有的以人为中心的各类分析方法进行研究,寻找其中的不足之处,提出了相应的改进方法。本文的主要研究内容如下:(1)提出了一种用于人体解析的类别感知网络。针对现有人体解析模型的提取特征方
命名实体识别(NER,Named Entity Recognition)是自然语言处理的热点方向之一,目的是识别文本中的命名实体,并将其归纳到不同的实体类型中。命名实体识别是自然语言处理的基础任务,其结果能有效应用于信息抽取、问答系统、文本分类等各项后续任务。命名实体识别的准确度将直接影响自然语言处理中后续工作的表现。随着深度学习的发展,基于长短期记忆网络(LSTM,Long Short-term
作为基础工程的建筑工程建设,在社会经济发展水平中占有至关重要的地位。但是在传统的工程管理模式下,成本控制不是各参与方最关心的问题,而施工方在竣工结算时又想将工程经济效益最大化。因为从设计阶段开始就没有一套规范的项目成本控制流程,施工过程中工程变更屡见不鲜,工程索赔更是常有发生,工程窝工、大规模的赶工期也经常发生,这些现状在传统工程管理模式下会造成工程资源的大量浪费,包括人力、物力、财力。而BIM5