【摘 要】
:
微结构光纤具有丰富的内部结构以及各种新奇的光学特性,近年来被广泛应用于光纤传感器的设计和制作,基于微结构光纤的传感器主要可分为四种类型:光栅型、干涉仪型、SPR型和材料填充型。材料填充型微结构光纤传感器通过全填充或者选择性填充的方式将各种新型功能材料集成到微结构光纤内部,这便于功能材料和光纤内传输的光产生强烈的相互作用,同时功能材料本身对外界环境的高敏感性赋予了这种传感器更优良的传感性能。依据当前
论文部分内容阅读
微结构光纤具有丰富的内部结构以及各种新奇的光学特性,近年来被广泛应用于光纤传感器的设计和制作,基于微结构光纤的传感器主要可分为四种类型:光栅型、干涉仪型、SPR型和材料填充型。材料填充型微结构光纤传感器通过全填充或者选择性填充的方式将各种新型功能材料集成到微结构光纤内部,这便于功能材料和光纤内传输的光产生强烈的相互作用,同时功能材料本身对外界环境的高敏感性赋予了这种传感器更优良的传感性能。依据当前功能材料填充微结构光纤传感技术的研究进展,本论文设计并研究了几种新型微结构光纤传感器,具体研究内容如下:1.提出了一种基于空芯光纤自映像效应的光纤传感器,该器件主要由熔接在两根单模光纤之间的一段空芯光纤组成,实验研究了不同空芯光纤长度和光纤熔接参数对器件内自映像效应的影响。采用液体填充结构和非填充结构对传感器的传感性能进行了实验研究,空芯光纤中液体的引入能显著提高器件的温度灵敏度,当温度从25℃升高到75℃时,填充液体样品的温度灵敏度可达-0.49 nm/℃;在1.448-1.450的折射率测试范围内,填充液体样品和未填充液体样品的折射率灵敏度几乎相同,约为12000 nm/RIU。该传感器结构简单、灵敏度高、成本低,在物理和化学传感领域具有潜在的应用前景。2.提出并实现了一种基于光子晶体光纤(PCF)耦合器的超灵敏光纤温度传感器,采用一种基于错位熔接技术的选择性填充方法,将甘油和水的混合溶液选择性填入到PCF第二圈顶点的一个空气孔中,制备了PCF耦合器,由于填充液体的空气孔与PCF的纤芯近距离平行排列,纤芯和液柱波导的基模在谐振波长处可以有效地耦合,从而在透射光谱中得到相应的耦合峰。通过填充不同折射率的混合溶液,得到了不同谐振波长的PCF耦合器,并对其温度响应进行了实验研究,所获得的温度灵敏度高达543.05 nm/℃,这是同类光纤传感器迄今为止所报道的最高温度灵敏度,这种器件在生物医学相关的高精度温度传感中有着巨大的应用潜力。3.提出了一种基于液晶填充PCF的电场传感器,E7液晶被精确地填充在PCF最内圈的一个空气孔中,形成一个光纤耦合器,当施加外部电场时,耦合峰波长对电场变化的响应灵敏度可以达到0.70 nm/(Vrms/mm)。该器件也可作为电光开关或调制器工作,光关断时间和开启时间分别约为47 ms和24 ms,这种液晶填充的PCF耦合结构有望在电场传感和波长可调谐电光器件中得到应用。4.提出了一种基于液晶填充边孔光纤的高灵敏度传感器,该传感器具有结构简单、易于制作、成本低等优点。实验结果表明,所提出的器件拥有较低的电场传感响应阈值,并获得了较高的的温度灵敏度和电场灵敏度,分别为-1.50 nm/℃和1.20nm/(Vrms/mm),同时器件对外界温度或电场的响应具有良好的重复性,这些显著的优点使其在传感领域具有广阔的应用前景。
其他文献
幸福是人类的终极追求目标。特别是随着经济的发展和物质的繁荣,人们开始从单纯追求基本需求的满足转向关注幸福。越来越多的政府机构和政策制定者开始认识到,通过幸福感来评价社会进步、社会发展和政府政策等,而不是仅仅通过经济产出如GDP等指标,是一种更为有效和更有意义的方式。例如,联合国开发计划署(UNDP)在《1990年人文发展报告》中提出利用人类发展指数(Human Development Index)
荧光技术包括荧光光谱、激光共聚焦显微镜技术、荧光定量PCR、和荧光各向异性等,其广泛应用于生物化学及分子生物学研究中,是研究生物大分子的结构和功能,以及分子间相互作用的重要手段之一。microRNA(miRNA)是一类长约20-24 nt的非编码小分子RNA,于转录后水平上负调控靶mRNA从而影响基因的表达,对生物的生长、发育、分化等生命活动起重要调控作用。在动植物中,miRNA的生物合成途径已被
基于光栅的X射线相衬像对关节中的软骨具有较吸收像更好的成像效果,对和软骨相关的疾病如关节炎等具有潜在的应用价值。而基于光栅的X射线暗场像则在检测肺气肿、肺部纤维化、肺部肿瘤和乳腺微钙化等方面取得了不错的实验结果。X射线相衬成像和暗场成像除了可以使用传统的Talbot-Lau干涉仪外,还可以利用双相位光栅干涉仪和非相干X射线成像系统。双相位光栅干涉仪较Talbot-Lau干涉仪的优点是可以不需要分析
近年来,窄线宽光纤光栅激光器以其单频、窄线宽、超低噪声、抗干扰性强以及超高单色性、超高相干性等特性而被广泛地应用于现代信息社会之中,如在光纤通信系统、光纤传感器、相干激光雷达、微波光子系统以及太赫兹等领域。本文系统地研究了一种利用有源相移光纤光栅作为谐振腔的窄线宽光纤激光器,并探索其在传感领域的应用。本文在相移光纤光栅的理论仿真及制备、光纤激光器谐振腔结构优化与线宽测试、激光器双折射调控与偏振特性
显著性目标检测旨在确定自然场景中最能吸引人们注意力的目标区域。相比高层的图像理解算法,如目标检测、目标跟踪、图像检索,显著性目标检测属于底层的图像处理方法,可以利用其结果提升其他图像算法的速度和精度。根据显著性算法的输入数据不同,显著性目标检测可以分为图像显著性目标检测和视频显著性目标检测。相比图像显著性,视频显著性需要同时考虑单帧图像的空间特性和视频序列的时序特性,其计算复杂,挑战性高。本文的研
心血管疾病已成为严重威胁人类生命健康的头号疾病。计算机技术与医学影像学的相互渗透,使得人们对心脏组织结构实现了跨越式的探索。磁共振(MR)具有极好的组织分辨能力,并且不需要注射对比剂,能直接作横断面、冠状面、矢状面,以及任何方向的斜切面等的断层扫描,同时具有非常好的空间分辨率,可以更加准确的观察心脏结构的变化特征。通过研究MR图像可以很好的描述心脏图像序列中感兴趣区域、边缘和轮廓线等的时空运动状态
1.研究背景社交网络服务,例如Facebook和Twitter拥有数百万甚至数十亿用户,并成为最受欢迎的互联网应用程序服务之一。You Tube,Movielen,Last.fm以社交媒体服务而闻名。DBLP和Research Gate是关于作者的社交网络,可帮助联系科学家及其研究。社交网络服务分为几类。例如,Foursquare和Gowalla是基于位置的社交网络的网络类型。Liu通过Meetu
能源是环球经济发展和人类生活水平稳步提升的引擎。在化石能源日趋枯竭的今天,大规模开发和利用以太阳能光伏发电为代表的可再生能源,是环球能源可持续发展的必由之路。然而,太阳光照固有的年日周期性、云雾雨雪导致的光照间歇性和波动性等,使光伏发电功率大小具有同样的同期性、歇性和波动性特征。这些特征对电能高速公路“电网”的安全性和高效率带来了挑战。如何尽可能准确掌握复杂气象条件下太阳光照产生的光伏发电功率大小
高品质因子(Q值)Fano共振有着广泛的应用,比如高灵敏度生物传感器、激光、光开关等。Fano共振由一个宽谱的明模和一个窄谱的暗模干涉形成,它具有特殊的尖锐非对称线形,在获得高品质因子方面有很大优势,吸引了等离子体激元、超材料、光学、电磁学等领域学者的广泛关注。金属材料在光学频段具有不可避免的损耗,因此人们把研究Fano共振的目光更多的聚集在了利用介质颗粒米氏散射来实现上面。近年来,利用单一高介电
空芯纯石英光纤以其优良的耐高温特性和独特的空气孔微流通道结构在高温高压传感、气体及微流体传感领域具有重要的研究意义与应用价值。温度和压力作为反映工程结构健康状态的重要参量,其测量在工程领域至关重要。随着科技发展和工业技术的进步,高温和高压的测量在航空航天、石油化工、深海探测、冶金工业等领域愈加重要。光纤传感器以结构小巧、灵敏度和集成度高以及在线分布式测量等特点被广泛应用于温度、压力及其他物理、化学