论文部分内容阅读
镁合金是实际应用中最轻的金属结构材料,具有高的比强度、比刚度和减震性,而且易于回收,在汽车、电子、航空等领域有广阔的应用前景。常规铸造镁合金显微组织及第二相比较粗大,高温易氧化,室温和高温强度都不理想,难以满足高性能结构材料的需求。快速凝固技术能显著细化晶粒、扩展固溶度及形成新的亚稳相,从而大幅度提高合金的强韧性和耐蚀性,因此快速凝固技术被广泛应用于制备高性能和新型镁合金。Mg-Zn系合金属于典型的高强镁合金,但该类合金的强度很难满足在更高条件下应用,尤其难以满足在较高温度范围内应用。Y在提高镁合金的强度和耐热性方面有很大的应用价值。 本文采用常规凝固技术制备出三种不同成分的Mg-Zn-Y合金,将合金在石英管中重熔后用单辊制带设备制备不同冷却速度的快速凝固Mg-Zn-Y合金条带。采用OM、SEM、EDS、XRD和TEM分析了常规凝固及快速凝固Mg-Zn-Y合金的显微组织和相组成,用DSC分析了合金升温过程中所发生的相变。运用与时间有关的非均质形核理论计算了在快速凝固Mg-Zn-Y合金中各竞争相的形核孕育期时间与温度的关系,研究了快速凝固合金的形核动力学过程。 研究表明,在常规凝固条件下,Mg-Zn-Y合金组织为树枝晶,随着Y的增加和Zr的添加,晶粒逐渐细化,等轴趋势明显加强。合金的晶界析出相主要以两种形态存在:一是在三角晶界形核,呈“鱼骨状”;一是几乎包围整个晶粒,呈连续网状。快速凝固Mg-Zn-Y合金条带的横截面组织分为三个区域:近辊面细晶区、内部柱状晶区、自由面等轴晶区;随着转速的增大,自由面等轴晶区的厚度越来越薄,并在某些地方消失。快速凝固Mg-Zn-Y合金条带贴辊面组织为等轴晶,晶粒内部有细小的颗粒状析出物,随着转速的增大,晶粒逐渐变细,颗粒状析出物越来越少。Mg7Zn2Y合金条带中析出物为Mg-Zn二元相,Mg7Zn3Y和Mg7Zn3Y0.55Zr合金条带中析出物为Mg-Zn-Y三元相。 合金成分的变化和凝固条件的不同引起相的变化。在常规凝固条件下,Mg7Zn2Y合金主要由α-Mg、Mg7Zn3、Mg12YZn相组成,Mg7Zn3Y和Mg7Zn3Y0.55Zr合金中主要由α-Mg、Mg3YZn6、Mg3Y2Zn3相组成。快速凝固条件下,Mg7Zn2Y条带主要由α-Mg和Mg2Zn11相组成,Mg7Zn3Y和Mg7Zn3Y0.55Zr合金条带中主要由