论文部分内容阅读
期权是全球资本市场最具活力的金融风险管理工具之一。如何测算期权的合理价格是其存在与健康发展的关键。1997年诺贝尔经济学奖授予了期权定价公式的发明人Scholes和Merton,体现了经济学界对期权定价理论价值的充分肯定。B-S模型问世以来,在学术界和实务界引起了强烈反响。在广泛应用的同时,学者对其准确性开展了深入的检验,并通过大量的实证研究发现,市场并非满足理想中的基本假设。不少经济学家对原有数理金融理论进行重新审视,对模型中存在的问题亦发表了不同的看法,从完善与发展B-S模型的角度出发,进行了很多扩展研究。对B-S模型的改进成为最近30年来数理金融研究领域关注的热点。其成果极大的丰富和发展了期权定价理论与方法,但同时仍存在一些不足。本文通过查阅文献,发现已有研究尚存在以下四点不足:(1)在参数估计方面,由于改进的期权定价模型通常含有多个待估参数,且目标函数含有大量的极值点,给参数估计带来了困难。现有研究主要采用极大似然算法来估计期权定价模型参数,但是该方法存在很多难以解决的问题;(2)有关高频量化交易下期权定价模型参数估计方法的研究工作十分匮乏;(3)局部波动率模型大多是依靠主观经验将时间与资产价格作为影响因子对波动率进行建模。虽然这些模型很容易解释,可是在精度上往往偏离了实际情况,何种形式是合理的,尚无理论依据,导致模型的鲁棒性较差,对异常波动的刻画能力较弱;(4)无论是波动率模型还是跳跃扩散模型在形式上通常是单个模型,对波动率“微笑”的刻画能力不足,导致对深度实值和深度虚值期权的定价往往出现较大偏差,出现定价不稳定现象。要解决这些问题,就一定离不开坚实和先进的数理方法,而深度学习、集成学习和智能优化算法的特征和强大性能可以对这些问题的研究提供支持。因此,本文基于深度学习、集成学习和智能优化算法,从参数估计和模型构建两个方面讨论了期权定价问题。本文主要做了两个方面的研究工作。第一部分,期权定价模型参数估计研究:针对中低频量化交易,设计首位存放式遗传算法估计Heston期权定价模型参数;针对高频量化交易,用前面设计的遗传算法积累历史实例求解信息,设计了一种基于卷积神经网络的两阶段启发式算法估计模型参数。第二部分,期权定价模型构建研究:为提高模型定价的稳定性,基于集成学习,以第一部分中研究得到的Heston模型作为基学习器,构建了组合期权定价模型;为提高模型的鲁棒性,运用深层波耳兹曼机和支持向量机,构建了以结构风险最小化为目标的确定性波动率函数模型。整个研究循序渐进进行,中低频量化交易下期权定价模型参数估计方法是高频交易下参数估计方法的前提,同时第一部分对现有模型参数估计方法的研究又是第二部分构建新模型的基础,为建模提供了基学习器和参数估计方法。具体研究成果及核心内容如下:期权定价模型参数估计研究部分:(1)根据期权中低频量化交易需求,设计了首位存放式遗传算法估计Heston期权定价模型参数。该算法具有避免丢失最优解和并行搜索的特点,有很好的概率跳出局部极小值,以概率1收敛到全局最小值。计算实验中,利用香港恒生股票指数期权的交易数据为样本得到待估参数,并用该参数对预测期的看涨期权和看跌期权进行了模拟定价。数值结果与进化过程表明,算法耗时满足中低频量化交易策略的实时性要求、在训练样本数据集上的定价精度较高、在预测期上的模拟定价精度令人满意,一定程度上克服了传统算法的不足。(2)根据期权高频量化交易需求,给出了一种基于卷积神经网络的两阶段启发式算法估计期权定价模型参数。算法核心思想是:以前面设计的遗传算法在训练实例上积累历史信息,基于卷积神经网络对其进行学习和泛化,并利用对新实例的泛化结果引导PSO算法求解新实例。计算实验中,以Heston模型为例,采用50ETF期权1分钟高频交易数据,数值结果表明:①本文设计的卷积神经网络可以较好地完成对9支主力合约的离线学习,训练数据集上的平均相对误差为24%。若采用传统的神经网络,误差巨大且不收敛;②本文算法可以充分利用历史数据信息来高效求解新实例,在卷积神经网络的引导下PSO算法优化阶段用时8秒左右即可达到收敛,满足高频量化交易的实时性要求;③基于所得参数的模型定价与实际价格具有较高的一致性,拟合程度令人满意。算法具有可行性和有效性。期权定价模型构建研究部分:(3)为提升模型定价的稳定性,基于集成学习构建组合期权定价模型,提高模型对深度实值和深度虚值期权的定价精度。本文将Heston模型作为基学习器,利用Adaboost算法训练一系列基学习器,并将它们集成。将模型参数估计分解为主模型参数估计和子模型参数估计,基于推举算法思想和前面设计的遗传算法分别给出了估计算法。通过计算平均相对误差和稳定性偏差(本文将模型定价的稳定性偏差定义为:最大相对误差与平均相对误差的差值),对比分析了组合模型与单个模型的定价能力。隔月和当月到期合约的两组计算实验结果表明,与传统Heston模型相比,组合期权定价模型在保持平均相对误差基本一致的同时,稳定性偏差分别降低了 64%和49%,可使所有执行价格的期权定价均达到预设的稳定性标准。该研究丰富了期权定价的研究方法,延拓了集成学习的应用边界。(4)为提升模型的鲁棒性和辨别复杂规律能力,本文运用深层玻耳兹曼机,自动、科学、有效地提取波动率的影响因子,基此利用支持向量机构建了以结构风险最小化为目标的确定性波动率函数模型,并将该模型的求解转化为非线性规划仅有线性约束问题。算例结果表明,本文对影响因子的提取使支持向量机模型,在50ETF期权历史波动率训练样本上的平均绝对误差降低了 70.86%,平均相对误差降低了 77.89%,一定程度上解决了传统方法中手工设计影响因子,忽略模型置信范围等问题,提高了模型刻画异常波动的能力。