论文部分内容阅读
为了系统掌握和分析秦岭南坡中段主要植物群落类型、植物多样性及其影响因素,本文选择火地塘林区、牛背梁和天华山国家级自然保护区三个典型区域,通过样线法和典型样地法相结合,在3条样线、108个样地群落学调查和数据分析的基础上,分别从植物区系成分、植物群落数量分类与排序、植物群落物种多样性特征、物种多样性的海拔梯度格局及土壤梯度格局等方面进行综合研究。主要研究结果如下:(1)秦岭火地塘林区植物群落类型多样,植物种类丰富,区系成分复杂。共有种子植物136科547属1283种,其中裸子植物5科9属15种,被子植物131科538属1268种;547个属植物的分布属于15个分布型,其中温带分布型属最多,占该区总属数的61.2%;热带-亚热带分布类型属次之,占该林区总属数的24.7%;世界分布型属占该区总属数的10.42%;中国特有分布型属占该区总属数的3.66%。属的分布型显示该区区系成分复杂,是热带-亚热带分布向温带分布型过渡区域,但温带区系成分具有绝对优势。对秦岭山脉7个区域及毗邻地区(子午岭)植物区系进行聚类分析和PCA排序,这些区域植物区系分布型根据相似性大小聚为四组:第一组是火地塘林区、天华山自然保护区、青木川自然保护区,同处秦岭南坡中段;第二组是牛背梁自然保护区、周至老县城区自然保护区,处于秦岭中段南北坡交汇点;第三组是伏牛山自然保护区,处于秦岭东段;第四组是秦岭西段的小陇山和子午岭。秦岭山脉不同区段植物区系分布型差异明显,西段低经度区温带-北温带成分高,东段高经度区热带-亚热带成分高,伏牛山区的热带-亚热带到温带分布型过渡性最为明显。(2)采用中、欧常用植被调查方法进行植物群落结构调查并比较分析二者的异同点。结果表明,中国常用的大样方套小样方的植被调查方法与法瑞学派的植物社会学野外植被调查方法相比,乔木层的取样面积较大、耗时、记录详细,而灌木层和草本层的取样面积却明显小于植物社会学野外植被调查方法;从两种方法得出的物种丰富度、Simpson指数和Shannon-Wiener指数差异显著(p <0.01),植物社会学野外植被调查方法得到较高的Simpson指数和Shannon-Wiener指数,更接近样地的真实情况,但是在研究多样性指数随海拔梯度的变化趋势时,两种方法表现出一致性;两种方法得到的均匀度指数差异不显著。(3)在TWINSPAN数量分类的基础上,结合《中国植被》分类系统和典型群落物种组成、群落结构等特征,将研究区内的群落划分为太白红杉林、华北落叶松林(人工林)、巴山冷杉林、秦岭冷杉林、青杄林、华山松林、油松林、油松+华山松林、华山松+栎林、油松+锐齿栎林、栓皮栎林、锐齿栎林、毛栗林、榆树林、白桦林、红桦林、牛皮桦林、栓皮栎+山核桃林、箭竹林、巴山木竹林、金杯杜鹃灌丛、银露梅+高山绣线菊灌丛、柳灌丛共33种植物群落类型,归属为4个植被型组、7个植被型、14个植被亚型。植物群落DCA排序表明,海拔和水分变化对植物群落分布最为显著。(4)秦岭南坡中段不同植被型物种丰富度指数高,而均匀度指数低。研究区内温性针叶林、寒温性针叶林多样性指数最高,而竹林、常绿草叶灌丛最低;各植被类型草本层多样性指数最高,灌木层次之,乔木层最低。草本层中,落叶阔叶灌丛物种多样性最高,竹林最低;灌木层中,温性针叶林物种多样性最高,常绿草叶灌丛最低;乔木层中,温性针叶林的种类最为丰富。不同森林群落类型不同生活型的多样性指数均表现为草本层>灌木层>乔木层。在12个森林群落类型中,青杄林内物种数最高(40种),华山松林、巴山冷杉林次之,栓皮栎林最低(21种)。太白红杉林Simpson指数和Shannon-Wiener指数最高,青杄林次之,栓皮栎林最低。各群落的乔木层中,白桦林的物种丰富度最高,华山松林和锐齿栎林次之;灌木层中以青杄林、华山松林、锐齿栎林、巴山冷杉林、油松林和栓皮栎林的多样性指数较高;草本层中牛皮桦林的物种丰富度最高,其次是青杄林和华山松,华北落叶松人工林物种丰富度最低。各群落草本层Simpson指数和Shannon-Wiener指数与乔木层呈显著正相关,而与灌木层无显著相关性。灌丛群落中,草本层物种多样性指数显著高于灌木层。灌丛物种丰富度表现为:银露梅+高山绣线菊>柳灌丛>金背杜鹃灌丛>黄花刺灌丛。(5)海拔1000m~2868m范围内,植物群落α多样性指数(丰富度指数、Simpson指数、Shannon-Wiener指数和均匀度指数)随海拔升高均表现为单峰曲线,即先随着海拔升高而升高,在1700m~1900m范围内达到最大值,然后随海拔升高又降低。草本层的物种丰富度、Simpson指数和Shannon-Wiener指数随海拔升高逐渐增大,在海拔1500m左右趋于稳定,至海拔2300m左右又随海拔升高而升高;灌木层和乔木层物种丰富度、Simpson指数和Shannon-Wiener指数随海拔升高而升高,海拔1700m左右又逐渐下降;草本层和灌木层的均匀度指数随海拔变化不大。β多样性指数中的Whittaker指数在海拔1000m~1500m和2500m~2800m范围内波动较大,随着海拔上升,呈先降低,再升高的趋势;Wilson指数随着海拔的上升,呈现单峰趋势;Jaccard相似性指数随着海拔差距的增大,海拔梯度间物种组成的相似性降低;Bray-Curtis指数与Jaccard相似性指数的变化趋势相似。(6)海拔与pH、有机质、全氮和有效磷含量具有显著相关性,而与有效氮、全磷、全钾和有效钾不存在显著相关性。海拔、土壤养分状况和群落物种多样性三者之间具有一定的相关性。土壤pH值在海拔1083m~1800m范围内逐渐升高,1800m~2000m达到最大值,2000m后随海拔升高逐渐降低;有机质、全氮含量随着海拔升高而升高;有效磷含量随海拔升高而降低。对8种不同森林群落类型土壤养分进行主成分分析,计算土壤综合因子值并排序,结果表明群落土壤养分由高到低依次为:红桦林、锐齿栎林、松栎混交林、华山松林、青杄林、栓皮栎林、巴山冷杉林、油松林。土壤pH值、有机质含量与物种多样性呈显著相关性。DCCA分析表明,群落多样性指数与有效钾呈显著正相关,与有效氮呈显著负相关。