论文部分内容阅读
甲基萘(MN)与甲醇(ME)烷基化合成2,6-二甲基萘(2,6-DMN)是具有开发前景的工艺路线之一。在烷基化反应过程中,利用沸石催化剂的择形性可使2,6-DMN的选择性高于其热力学平衡浓度,但反应的低转化率、催化剂的低稳定性制约了本路线的应用。 本文通过考察不同沸石催化剂和不同溶剂对MN与ME烷基化反应中MN的转化率和2,6-DMN选择性的影响,确定HZSM-5沸石和Hβ沸石为适宜的催化剂,均三甲苯为适宜的溶剂。以混合甲基萘(α-MN/β-MN为1/3)替代β-MN为原料,可以降低原料成本,提高催化剂活性。对HZSM-5沸石,考察了HZSM-5硅铝比、反应温度、空速以及原料中MN、ME和均三甲苯(TMB)的摩尔比(MN/ME/TMB)对烷基化反应的影响,确定了SiO2/Al2O3为38的HZSM-5沸石为适宜催化剂,反应温度460℃、重量空速(WHSV,以MN计)O.5 h(-1)、ME/MN/TMB原料比0.6/1/3为适宜的反应条件。对具有较大孔径的Hβ沸石,分别采用了Mg2+、Zn2+、Co2+和Ce3+离子交换,H3BO3和H3PO4浸渍以及正硅酸乙酯化学液相沉积等方法对Hβ沸石进行改性,以改善其催化MN与ME烷基化性能。实验结果表明,Mg2+和Zn2+离子交换改性,可以提高MN烷基化转化率60%以上;正硅酸乙酯液相沉积改性,可以提高2,6-DMN选择性30%以上。弱酸中心数为催化甲基萘与甲醇烷基化反应的催化活性中心,而强酸中心则会增加副反应发生的几率,加速催化剂的失活。 针对HZSM-5沸石在烷基化反应过程中易积炭的问题,探索了超临界反应条件对HZSM-5沸石催化MN与ME烷基化反应性能和催化剂稳定性的影响,发现超临界反应条件下MN转化率为常压反应时的3~4倍,催化剂的寿命延长30倍以上:当催化剂未完全失活时,超临界流体可以使催化剂的活性得到恢复;通过对常压(气相)和超临界条件烷基化反应产物的GC-MS、1HNMR分析以及对常压(气相)和超临界条件烷基化反应后催化剂进行比表面积、NH3-TPD、Py-IR、XRD、IR、SEM和TG等分析表征,探讨了超临界反应条件提高MN转化率和催化剂稳定性的机理。