论文部分内容阅读
本文采用文本分析、历史研究和比较研究方法,对魏尔斯特拉斯原始论文和讲义进行了详细、全面、系统地文献解读和分析,同时根据他的学生和其他数学史家相关主题的研究文献,以探究基本问题——魏尔斯特拉斯复变函数思想、方法与理论的形成与发展为主旨,结合实分析等领域的密切关联,剖析、梳理了魏尔斯特拉斯的复变函数理论构架,并将体现于其中的魏尔斯特拉斯复变函数思想的特征做出深刻总结和客观评价。获得了以下主要成果:1.围绕魏尔斯特拉斯复分析思想缘起问题,兼顾外因与内因对19世纪复变函数的发展进行了考察与梳理,介绍了通向复分析三个基本途径——代数分析、积分、几何。指出了德国数学组合分析与古德曼的级数工作以及分析严格化要求的共同影响,构成了魏尔斯特拉斯发展复变函数理论的动机。2.全面勾勒了魏尔斯特拉斯不平凡的一生,从生活轨迹到学术生涯以及教育活动等方面,概要介绍了他在不同数学领域取得的成就、思想以及教育观念。深刻体现了魏尔斯特拉斯在19世纪后半叶作为数学界领军人物的核心地位与强大的影响力。3.详细考察魏尔斯特拉斯早期的三篇论文,从解析函数的积分表示、级数表示以及微分形式的理论论述中,得到若干重要结果如双重级数定理、柯西积分定理与洛朗级数定理等等,揭示魏尔斯特拉斯复分析方法的出现以及发展复分析理论的基础。4.探析了魏尔斯特拉斯中期的解析因子理论,反映了魏尔斯特拉斯数学思想的连贯性,通过他对复变函数理论某些基本问题的关注,体现了代数方法的研究手段。通过与复变函数关联度的考察,强调了这一阶段蕴含的数学思想对后来整体解析函数理论具有一定的思想启发力。5.深入考察了魏尔斯特拉斯后期,即在柏林大学授课期间,完成并提交于德国科学院的论文,借助解析函数的性质并将复变函数理论一般化,说明此时魏尔斯特拉斯已将复变函数理论作为独立的理论进行研究。这一阶段是复分析理论不断深化、整体理论构架形成时期。6.详尽分析了魏尔斯特拉斯学生的“解析函数导论”课堂笔记,更加清晰地重构魏尔斯特拉斯函数理论体系。魏尔斯特拉斯以“解析映射”概念为基本构成,进行解析延拓,从而实现由局部获得整体解析函数。完整地剖析了魏尔斯特拉斯的复变函数论思想、理论与方法。7.探讨了魏尔斯特拉斯复变函数思想影响的张力与限度。魏尔斯特拉斯对整函数和亚纯函数的研究开启了三个方向的系统研究,对19世纪末至20世纪诸多函数论分支的发展产生深刻的启发与导向。另一方面,分析了魏尔斯特拉斯复变函数思想中代数性的局限性,当现代复变函数转向几何方向蓬勃发展时,其复变函数思想与方法逐渐式微。