【摘 要】
:
随着社会的不断发展,特别是信息技术和人工智能的飞速发展,人们的学习方式和思维方式得到很大程度上的改变。为了能给社会提供更多促进时代发展的人才,培养学生的高阶思维就显得尤为重要。数学作为基础教育阶段最重要的学科之一,理应在数学课程的教学中培养学生的数学高阶思维。本研究在文献分析的基础上,根据数学高阶思维分别在敏捷性、灵活性、深刻性、批判性和创造性五个方面上的表现形式,对数学高阶思维进行了描述性界定,
论文部分内容阅读
随着社会的不断发展,特别是信息技术和人工智能的飞速发展,人们的学习方式和思维方式得到很大程度上的改变。为了能给社会提供更多促进时代发展的人才,培养学生的高阶思维就显得尤为重要。数学作为基础教育阶段最重要的学科之一,理应在数学课程的教学中培养学生的数学高阶思维。本研究在文献分析的基础上,根据数学高阶思维分别在敏捷性、灵活性、深刻性、批判性和创造性五个方面上的表现形式,对数学高阶思维进行了描述性界定,并基于高一上学期函数相关内容对数学高阶思维的具体表现形式进行举例说明。然后根据数学高阶思维的表现形式,对收集到的高一学生期中考试的数学试题卷和答卷进行进行深入的分析,分别分析了试题中涉及到的数学高阶思维及其表现形式以及学生答卷中数学高阶思维的表现情况。再根据调查,分析、总结出了高中生数学高阶思维的一些现状,最后根据现状,提出了培养高中生数学高阶思维的教学策略。数学高阶思维是高阶思维在数学上的特殊形式。主要表现在敏捷性、灵活性、深刻性、批判性、创造性五个方面。调查分析表明:学生在具体的问题情境中灵活地应用常见数学的数学方法和数学技巧存在困难;对条件或者结论的等价转换存在困难;缺少数学基本思想;对数学对象的理解不够深刻;数学知识点之间的联系程度不够紧密;在数学学习中缺乏反思、归纳和总结;在数学学习中缺乏监控、反审、质疑、检验等批判意识;联想能力较弱,思维跨度较小,创新能力不足。根据调查分析的结果,提出了培养高中生数学高阶思维的教学策略:敏捷性方面,总结数学通法;渗透数学思想;扩展数学知识;开展数学活动。灵活性方面,展示思维过程,强化知识联系;引导学生决策,选择最优方案;培养转换意识,打破思维定势。深刻性方面,强化数学概念,深化学生理解;善用数学例题,引发深度思考;精心设计习题,促进深入分析。批判性方面,鼓励学生互评;引导学生反思。创造性方面,激发数学兴趣;培养问题意识;鼓励大胆猜想;引导合理猜想。
其他文献
本文在绪论介绍了不定方程的背景和研究现状,并在第二部分给出本文所需要的一些基本概念、性质、和定理,在前人的基础上,本文主要解决了部分三次不定方程整数解的问题.对于三次不定方程x3±a3=Dy2,本文的第三部分证明了当a=2,D=273时,不定方程x3+8=273y2 仅有整数解(x,y)=(-2,0),(34,12);当 a=3,D=182 时,不定方程x3+27=182y2 仅有整数解(x,y)
Stokes问题是一类重要的椭圆边值问题,在工程领域中有着广泛应用.虽然Stokes方程是线性的,容易离散,但是其边界条件的复杂性导致在数学建模、理论分析、数值求解方面具有很大的难度.本文考虑非线性泄漏边界条件Stokes问题的数值算法.先将Uzawa迭代算法推广到具有泄漏边界条件的Stokes问题上,为了解决罚参数选取的困难,得到了预测校正算法.第三部分考虑泄漏边界条件Stokes问题的Uzaw
声波反散射问题在数学物理学中有着十分重要的地位,且其研究成果广泛应用于多个领域,例如雷达、声纳、医学成像、无损检测、地质勘探等。在现有的反散射问题中更多的是考虑外部反散射问题,本文则考虑内部声波反散射问题,其点源和测量数据均在散射体的内部。而内部声波反散射问题有两大难点,一是不适定性,二是非线性,因此内部反散射问题的研究比较困难,本文将用分裂法来求解内部反散射问题,主要利用分裂法研究两个问题,一个
本文主要针对芬斯勒流形上的导航术问题展开了研究,其内容涉及芬斯勒流形上的导航术问题与流形的单位切球的几何之间的重要关系,锥Kropina流形上的导航术问题以及Randers流形上的导航术问题.首先,我们揭示了芬斯勒流形上的导航术问题与流形的单位切球的几何之间的重要关系.其次,我们研究了锥Kropina流形上的导航术问题.若F=F(x,y)是流形M上的一个锥Kropina度量且V是M上满足F(x,-
在自然界中许多现象具有状态在某些时刻突然改变的特点,我们可以用脉冲系统来描述.脉冲微分方程理论为许多客观世界现象的数学建模提供了一个更加准确自然的框架,如人口动态系统、神经网络模型、传染病模型等.同时,在现实生活中,系统状态不仅与当前时刻相关,而且受过去一些时刻状态影响,系统普遍存在着时滞现象.近年来,脉冲时滞微分方程的研究已经取得了很多重要成果,而微分动力系统周期解和概周期解的研究是微分动力系统
可持续物流设施选址问题的多目标优化方法研究具有十分重要的理论意义和应用价值.由于客户满意度是物流公司的一种潜在价值,对公司的可持续性发展作用重大,因此提高客户的满意度问题成为可持续物流设施选址问题中的关键问题之一.本文首先针对Tang等人提出的可持续物流设施选址多目标优化模型进行改进,通过引入满意度函数衡量客户对物流公司提供服务的满意程度及企业的可持续发展能力,构建以成本最小、客户平均满意度最大和
T-S模糊模型是用多个线性系统来拟合同一非线性系统,它可以用较少的模糊规则来表示高度复杂的非线性系统.而在实际系统中,经常伴有干扰信号和扰动等一类不确定性,这些不确定性影响了系统的稳定,因此采用滑模控制解决这一问题.滑模控制是一种特殊的非线性控制,具有响应速度快、对外部干扰具有不变性的优点,得到了国内外众多学者的关注.近年来,随着对滑模控制的不断深入研究,滑模控制理论得到了进一步完善并广泛应用于各
关于向量优化理论的研究已取得了丰富成果,主要涉及向量优化各种解的概念、最优性条件、标量化、代数性质与拓扑性质以及与向量优化问题密切相关的变分不等式问题等.本文共分为两章,主要研究了两类非线性标量化函数的若干性质,并利用线性标量化方法与非线性标量化方法给出了向量优化问题近似真有效解的稠密性结果.主要内容安排如下:第一部分研究了Minkowski泛函和一类特殊的非线性标量化函数-△函数的基本性质.首先
向量优化问题就是在一定条件下极大化或极小化向量值函数,这一问题的研究涉及非光滑分析、凸分析、泛函分析等多门学科领域,吸引了许多学者的研究.Co-radiant集和标量化函数是研究向量优化的重要工具,其中co-radiant集是向量优化问题统一解研究的基本工具.本文首先在抽象凸的框架下研究了这两类特殊的集合:radiant集和co-radiant集的性质,利用Minkowski泛函给出了radian
非凸优化问题广泛出现在稀疏优化、压缩感知、数据挖掘、图像去噪及机器学习等众多实际前沿问题中,交替方向乘子法是有效求解凸优化问题的迭代算法,当目标函数为非凸的情况时,该算法的收敛性或许无法保证.本文主要研究了求解带线性等式约束的两类非凸可分优化问题的两类改进的交替方向乘子法.研究内容如下:第一部分,针对一类三块可分非凸优化问题,提出了一类正则化交替方向乘子法.首先,本文建立了该算法的全局收敛性.其次