高能金属锂(钠)负极的可控生长研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:lindan1982
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
锂金属负极具有高的理论比容量(3860 mAh g-1)和低的电化学电势(-3.04 V)而被认为是最理想的锂电负极。然而,在金属锂的沉积过程中,由于电荷分布不均而导致的锂枝晶问题严重阻碍了其应用。此外,金属锂电极在沉积/溶解过程中巨大的体积波动严重破坏了SEI膜的稳定性,导致电极库伦效率的不断降低。因此,如何抑制锂枝晶的生长,缓解金属锂在沉积/溶解过程中的体积波动,实现金属锂的可控生长对金属锂负极能否实现应用至关重要。针对上述问题,本论文将通过对金属锂沉积基底的表面修饰或结构构筑来实现金属锂的均匀沉积和可控生长。作为拓展研究,本文同时对金属钠负极的可控生长进行了研究。首先,采用磁控溅射法将Cu99Zn合金沉积在铜集流体上以形成原子级均匀分布的“人造缺陷”锌。由于锌原子可以与金属锂无限互溶,沉积金属锂可以预先与锌原子形成固溶体,从而降低了金属锂与集流体间的沉积界面能。此外,原子级均匀分布的锌原子可以作为金属锂成核的诱导晶种。通过该方法我们实现了金属锂的均匀沉积及无枝晶生长。在对称电池测试中,合金修饰铜箔集流体可以稳定循环超过1000小时以上。在库伦效率测试中,合金修饰泡沫铜集流体在沉积容量为10 mAh cm-2的情况下,库仑效率可以保持在98%以上。其次,采用石墨烯纸团作为金属锂的沉积骨架。石墨烯纸团高的内/外表面积,有助于消散电流,并允许金属锂在石墨烯纸团内部及间隙间稳定地沉积/溶解,而不会造成电极出现巨大的体积波动。其次,石墨烯纸团易锂化的特点,可以保证快速的锂离子传输。采用石墨烯纸团作为金属锂的沉积骨架,我们实现了高容量金属锂的可控生长。在库伦效率测试中,石墨烯纸团电极在循环超过750圈(1500多小时)后,平均库伦效率依然保持在97.5%以上。在金属锂沉积容量高达10 mAh cm-2的情况下,石墨烯纸团电极依然保持了良好的稳定性。此外,采用多孔铝作为金属钠负极的集流体。多孔铝集流体内部相互贯通的孔结构,不仅能够为金属钠沉积提供更多的形核位点,同时这些孔道结构有利于钠离子流量的均匀分布。此外,孔道结构的限域作用可以有效缓解金属钠在沉积/溶解过程中的体积波动。采用多孔铝作为金属钠的集流体,我们实现了金属钠的可控生长。在库伦效率测试中,多孔铝电极能够在保持低电压滞的情况下稳定循环1000圈以上,且平均库伦效率稳定在99.9%以上。
其他文献
聚变堆第一壁材料服役环境极其恶劣(高温、高压和高通量的中子辐照),由此产生的级联碰撞和氦(He)辐照损伤对反应堆安全及稳定运行至关重要。He通常不溶于第一壁结构材料且扩散激活能很低,易与材料中其它缺陷(空位、位错和晶界)发生相互作用形成He泡,进而导致材料性能的恶化,如肿胀、硬化和脆化等。目前对这些现象的微观尺度机制还不是十分清晰,通过实验方法深入探究He原子扩散、偏聚行为,以及He泡与材料结构缺
反常热膨胀材料由于其独特的物性在空间技术、应用超导、低温工程以及精密电子仪器等领域具有潜在的应用前景,目前成为新材料领域的研究热点。本论文通过控制化学配比以及热处理工艺的方式,分别研究了La(Fe,Si)13基系列化合物以及TiNbZrO合金的反常热膨胀性能,制备出了多种宽温区负热膨胀特性以及零膨胀特性的材料。主要开展了以下几方面研究工作:(1)自主搭建了低温热膨胀测试平台,实现了在1.8-400
薄壁件广泛应用于航天航空工程中,目前通常采用高速铣削来实现这些薄壁件的高效高精度加工。由于薄壁件刚性差,导致其在铣削过程中容易发生颤振和变形,因此,研究薄壁件铣削过程的颤振和变形机理,从而提出有效的颤振和变形抑制方法具有十分重要的理论和工程意义。目前,研究人员提出了多种抑制薄壁件铣削颤振和变形的方法,其中,一种能有效抑制薄壁件铣削颤振和变形的方法是增强薄壁件铣削过程中自身的刚度和阻尼,工程中常用的
半导体性单壁碳纳米管由于其独特的几何结构和丰富的电子结构,在各个领域尤其是电学和光电领域应用广泛,前景可期。一般来说,不加控制的生长制备出的碳纳米管是金属性管和半导体性管的混合物,二者比例理论上应为1:2。金属管的存在不但影响薄膜晶体管的电学性质,而且会淬灭半导体管中的激子,令其在其他领域的应用也无法实现。因此,实际应用中必须去除金属管。本论文选用后处理中的选择性分散法进行实验条件优化,为后续半导
本文利用FeCoCrNiAl+Ti C复合高熵化激光熔覆层改善了Cr12MoV冷作模具钢的耐磨性能、耐蚀性能和耐高温氧化性能。系统探索多相高熵化熔覆层的形成机制和强化机理;详细研究高熵化熔覆层组织和性能的高温稳定性;分析高熵化熔覆层中的迟滞扩散效应对陶瓷颗粒微观形貌的影响。研究结果对实际生产应用具有重要的理论意义和指导作用。基于FeCoCrNi系高熵化熔覆层的生成条件和影响因素,研究了稀释率对高熵
低碳铁素体不锈钢因其具有较好的高温强度、抗热疲劳性、抗高温氧化和较低的成本而得以广泛应用。低碳铁素体不锈钢ERW(Electrical Resistance Weld)焊管具有服役性能优异、外观尺寸精度高、生产效率高、生产成本低等优点,发展前景广阔。本文以太原钢铁公司生产的低碳铁素体T4003不锈钢卷板为原材料,利用天津焊管有限责任公司新近建成的ERW355和ERW660高频直缝电阻焊管生产线开发
海洋油气资源依然是社会主要的能源来源,而在整个海洋油气资源开发过程中,海洋油气输送管道处于至关重要的位置,因为一旦管道遭到破坏,不但会造成经济损失,还会引发各种难以治理的环境问题。由于海底油气管道的工作温度和压强大幅增加,深海管道的整体屈曲问题日益突出。在管道整体屈曲过程中,初始缺陷的形态对其响应具有重要的影响。特别是海底油气管道所处环境更为复杂,可能会出现诸如悬跨段、竖向凸起等海床缺陷形式,这些
BiFeO3是单相室温多铁性材料,具有铁电性和反铁磁性,在自旋电子学器件上具有重要的应用价值,是凝聚态物理和材料科学领域的研究热点之一。本论文基于密度泛函理论和非平衡格林函数方法,对多铁性BiFeO3异质结构的电子结构、磁性和输运特性进行了详细的研究,发现界面耦合引起的新物理现象,并揭示物理机制,为多铁性BiFeO3异质结构在自旋电子学器件上的应用提供坚实的理论基础。本论文的主要工作如下:(1)在
常微分算子的谱问题广泛应用于各个学科以及众多工程技术领域,因而越来越多的学者致力于这一问题的研究.其中,特征值关于参数的依赖性问题以及逆谱问题是谱问题中两个重要课题,它们在电子学以及量子力学等领域具有实际应用价值,同时也对特征值的数值计算以及数学物理中非线性发展方程的求解起到关键作用.本文主要针对复三阶测度微分方程和区间内部具有转移条件的非自伴Sturm-Liouville算子展开研究,包括耦合型
沟槽减阻是湍流边界层的一种被动控制减阻方法,关于这种方法的研究已经有30多年的历史。然而由于湍流内相干结构复杂多样,且随着时间不断发展和演化,迄今为止,人们尚未对沟槽减阻机理的认识达成统一。本文利用(Time-resolved particle image velocimetry)TRPIV的高时间分辨率的特性,在不同的雷诺数下对循环水槽中不同实验平板的湍流边界层流场分别从流-法向,流-展向两个角