论文部分内容阅读
雷达目标搜索与定位是反舰导弹飞行末端的重要引导方式之一。相对于反舰导弹,反—反舰导弹系统为实施有效拦截,需要对具有严重威胁并会带来致命后果的微波辐射源进行迅速精确定向,以便实施有效拦截。这类问题属于辐射源测向研究领域,相关干涉仪理论与技术相对于其它技术途径具有响应及时和适用于机动平台等突出优点,这对于反—反舰导弹系统尤为重要。在现代反舰导弹家族中,末端低空掠海飞行反舰导弹是其中十分重要的类型,由于海面散射杂波的多径干扰,使反—反舰导弹系统对于反舰导弹末端引导雷达高精度测向变得十分困难。当大型舰船上的相关干涉仪以低仰角姿态被动探测低空掠海飞行的反舰导弹时,因为海面散射引起的多路径效应导致相关干涉仪不能精确定位,甚至出现定位的空间坐标是目标镜像的情况。国内外针对短波测向定位的研究比较多,研制出了很多测向系统,比如相位干涉仪、相关干涉仪以及乌兰韦伯测向天线阵等,但是这些系统都不能解决辐射源引起的多路径问题。考虑到系统构造的复杂程度、性价比、可靠性、体积以及成本等问题,本文选择相关干涉仪为研究对象,研究基于相关干涉仪的掠海辐射源定位系统。该系统的研究对提升我国海面舰船防御能力具有重大意义。本文首先建立了海面多径雷达散射效应的几何模型,并对模型进行仿真验证。随后研究并提出了适用于低仰角海杂波多径散射的相关干涉仪目标定位算法。在对系统进行综合规划的基础上,为系统射频组成模块分配关键技术指标。完成射频模块设计、加工和调测,最后对射频前端系统进行测试。主要工作和贡献如下:1、当舰船上的相关干涉仪以低仰角的姿态被动探测低空掠海飞行的反舰导弹时,海面产生的多路径效应会导致测向偏差。传统标准相关干涉仪算法采用谱峰搜索的方式会导致运算时间过长,在不降低测向精度的情况下,提出利用基于维度拆分的相关干涉仪算法,该算法可大大提升测向速度,有利于实时测向。针对海面引起的多路径散射信号问题,提出利用空间谱估计算法,包括MUSIC算法和ESPRIT算法,对多目标进行空间坐标的定位分析。最后提出利用MVDR空域滤波和数字波束形成算法,对多路径散射矢量和信号进行空间方位的抑制,以达到降低多路径散射信号影响的效果。2、利用P-M谱构建海面模型,并因此建立多路径效应的几何模型。根据反舰导弹和相关干涉仪的高度、两者之间的距离、收发天线的方向图信息以及海面起伏特性,确定出海面雷达波有效散射区域。然后依据光亮点计算模型,在有效散射区域内寻找到与掠海辐射源有关的所有光亮点。最后用Matlab仿真软件对建立的模型进行理论验证。系统工作过程和原理(以本文仿真场景为例)是:当低空突防的反舰导弹(天线为垂直极化)向舰船袭来时,相关干涉仪先打开垂直极化扫描方式,存储直达信号和海面散射多径信号的混合信号的空间相位β1。再打开水平极化方式,存储此时海面散射多径信号的空间相位β2。然后根据空间相位β1和β2,运用干涉仪算法和MUSIC算法可以计算出混合信号的空间坐标方位角30和俯仰角82°,总散射信号空间坐标方位角40和俯仰角860。通过比较两者之间的空间坐标关系,可以得出导弹的空间坐标方位角小于30,俯仰角小于820。后采用MVDR空域滤波算法来消除散射信号的影响,可以看出,加入MVDR空域滤波算法后,散射信号的方位角和俯仰角分别被抑制了大约23dB和17dB,得到导弹的空间坐标方位角20,俯仰角800。比较导弹的方位角为00、俯仰角为790的场景设置,本文方法使相关干涉仪测向精度获得显著改善。(注:该部分提到方位角和俯仰角,是在本文的仿真场景下得到的)。3、相关干涉仪硬件系统的设计,总体硬件电路主要包括:双极化无源相控阵天线,移相器,功分器,微波开关电路,延时线,低噪声放大器,带通滤波器,混频器,振荡器,中频滤波器(包括在混频器中),鉴相器以及微处理器(Microcontroller Unit,MCU)系统数字信号处理部分。微波电路模块负责把接收到的微弱的低空突防的反舰导弹信号进行接收、滤波、放大和混频,得到200MHz中频信号。通过鉴相器得到包含信号空间相位函数,然后通过数字信号处理系统从函数中解出相应的空间坐标值,得到反舰导弹的直达信号的空间相位,测出反舰导弹的方位角和俯仰角。本文主要设计了射频前端系统,所设计的接收机系统在参考超外差接收机的基础上,增加I、Q两路支路以加强对镜像信号的抑制,并用ADS仿真软件对射频前端系统进行了系统仿真。仿真结果显示:该接收机系统动态范围86dB,噪声系数3.5dB,灵敏度-96dBm,系统带宽10MHz。最后在技术可行性分析基础上,为各个射频模块分配适合的关键技术指标。4、根据各个模块的技术指标,进行射频模块电路的设计。主要包括:阵列天线、移相器、开关电路、功分器、滤波器、低噪声放大器、混频器、本振等前端电路。先对各个模块电路进行原理图仿真,从理论上验证设计方案的正确性。然后实验验证方案,所设计模块技术指标基本与仿真结果一致。本文设计的下变频器,采用一个四次谐波镜像抑制混频器,把中心频率10GHz的射频信号与2.55GHz本振信号下变频到200MHz的中频信号,以避免直接产生9.8GHz本振信号时频率源不稳定和相位噪声过大的问题,且镜像抑制混频器能很好地抑制镜像信号的干扰。5、实验验证设计的射频前端模块。将阵列天线、功分器、开关电路、滤波器、低噪声放大器、混频器和本振模块搭接,用一个带宽为2~18GHz的标准喇叭天线作为发射天线,发射天线与信号发生器连接,产生中心频率为10GHz及功率为-20dBm的单频点信号。观察频谱分析仪可看出当天线为垂直极化时的输出中频功率大约为-42dBm;当天线为水平极化时的输出中频功率大约为-44.5dBm。测试结果验证了系统设计的可行性,并达到所需预期指标。因为缺少相关的测试仪器和该射频前端系统设计的不完备性,所以没有对动态范围、系统噪声系数、1dB压缩点以及IOP3等指标进行测试。6、在电子对抗中,压制干扰是常见的对抗方式之一。为了保证在侦查行动中,有效对敌方超高频频段信号进行压制以及保证我方大功率电子干扰设备隐蔽性,设计一款高度有效降低、尺寸减小,工作频带在800MHz~1.5GHz宽带天线尤为重要。在双圆锥宽带天线的基础上,制作出一个天馈网络以展宽限制尺寸的天线带宽。最后在外场试验中,峰值200W的发射极连接所设计的低轮廓宽带天线可以很好地屏蔽200米以内相应频段的信号;高温超导带通滤波器相对于普通微带滤波器具有更好的带外抑制能力和更低的带内损耗,降低系统电磁信号之间的互调干扰,因此在卫星通信和军事领域同样可以取代腔体滤波器。高温超导滤波器应用于基站收发系统中,可以降低接收机的噪声系数,提高接收机的灵敏度从而扩大基站覆盖范围和信道容量;在4G、5G无线基站中,配备了更多的收发系统就需要更多的高功率放大器和更多更大的散热片,为了降低基站成本、重量和散热问题,必须提高功率放大器的效率。Doherty功率放大器具有在保证输出功率的同时还能够提高效率的优势,因此在现代无线通讯系统中起着越来越重要的作用。本文设计了一款工作在1.7GHz~1.9GHz频段的Doherty功率放大器,饱和输出功率大于41dBm,饱和效率基本大于60%,功率回退6dB时效率依然在50%以上,相比其他的功率放大器而言具有明显的优势。