【摘 要】
:
大量研究表明硅(Si)能够提高多种植物对病害的抗性,但目前已有研究大多集中在叶片病害,并且主要从病理和生理生化的角度对地上部的抗性机理进行研究。然而,青枯病是一种严重的土传病害,Si提高植物对青枯病的抗性也得到证实,但从地下部根际微生态的角度研究其抗性机理则鲜有报道。因此,本研究以地下部根际土壤生态系统为核心,从根际生态学、土壤微生物群落结构,结合转录组学测序及16s rDNA和ITS片段测序技术
【基金项目】
:
国家自然科学基金(31370456); 广东省自然科学基金(S2012010010331); 教育部博士点基金项目(20124404110010);
论文部分内容阅读
大量研究表明硅(Si)能够提高多种植物对病害的抗性,但目前已有研究大多集中在叶片病害,并且主要从病理和生理生化的角度对地上部的抗性机理进行研究。然而,青枯病是一种严重的土传病害,Si提高植物对青枯病的抗性也得到证实,但从地下部根际微生态的角度研究其抗性机理则鲜有报道。因此,本研究以地下部根际土壤生态系统为核心,从根际生态学、土壤微生物群落结构,结合转录组学测序及16s rDNA和ITS片段测序技术,探索青枯菌侵染下,Si如何通过调控根际微生态环境,影响土壤微生物结构,以及对青枯菌的直接影响,从而缓解青枯病对番茄的危害。主要结果如下:(1)泥炭土培盆栽试验表明,泥炭土中pH随着外源Si施加量的增加而提高,外源Si施加浓度为2 mM时,泥炭土pH可达达到6.2左右。纯培养实验表明,当pH高于7.0时,青枯菌生长受到显著抑制。(2)16s rDNA和ITS片段测序结果表明,外源Si(pH校正为7.0)施Si并不影响门水平上的土壤细菌和真菌微生物群落结构,但显著影响属水平上细菌群落结构,抑制Fusarium,Pseudomonas等病原菌菌属的生长。(3)外源Si能够显著影响青枯菌的基础代谢和致病过程。Si显著抑制青枯菌关键致病途径-胞外多糖(EPS)合成的多个相关基因eps D,xps R,rip AI,tek,vrg,下游生理实验结果证实EPS合成量和生物膜合成减少。由此可见,外源Si对于青枯菌致病因子的抑制可能是其缓解番茄青枯菌病害的重要原因之一。(4)外源Si显著促进青枯菌DNA修复基因ogt和蛋白修复基因deg P的表达,侧面表明Si对青枯菌具有潜在的毒性。(5)外源Si显著抑制青枯菌运动负反馈调控基因Che Z和Fli N基因并促进下游鞭毛马达相关基因pil E2,pil E,fim T表达,但移动性实验表明,施Si处于与对照,青枯菌移动距离并无显著差异。总之,本研究首次证明Si对土壤微生物群落结构组成具有显著影响,能够抑制土壤中病原微生物的生长。转录组测序首次发现Si能显著抑制青枯菌致病基因的表达,并促进运动相关基因的表达。研究结果为解释Si降低植物土传病害提供新的思路。
其他文献
铵态氮(NH4+)和硝态氮(NO3-)是植物吸收和利用的主要无机氮源,对作物生长发育、产量与品质形成具有重要影响。对于多数作物而言,铵硝混合营养比单一氮源(NH4+或NO3-)更有利于作物生长和氮素吸收,并提高氮素利用效率。研究表明,在铵硝混合营养中,NH4+可能参与调控作物氮素吸收和硝酸盐积累过程,而NH4+的吸收和转运主要通过铵转运蛋白(Ammonium transporter,AMT)来完成
《白纻舞》起源于吴国吴地,因其白色苎麻所制表演舞服而得名。自被传入宫廷后深受皇室贵族的喜爱,从三国直至隋唐数百年间兴盛不衰。本文以《白纻舞》为研究对象,探究其不同因素造成的不同时期的变化及审美特征。
硫苷是一种重要的次生代谢物质,主要存在于芸薹属植物中,参与植物的各种反应,包括抗逆、抗虫、抗病菌等,同时也参与人体抗癌和抗氧化作用,在不同组织部位硫苷含量差异显著,但目前缺乏系统的对各组织部位硫苷基因表达进行研究。在硫苷合成代谢中存在2-含氧依赖双加氧酶(ODD)基因,在拟南芥中该基因合成酶催化3-丁烯基硫苷(NAP)向2-羟基-3-丁烯基硫苷(PRO)的转化,而PRO硫苷是芸薹属植物苦味的主要来
猪对氮营养素的利用效率受诸多因素的影响,日粮蛋白水平是影响猪的生长发育和养分利用效率的关键因素。肝脏是哺乳动物重要的代谢器官,日粮蛋白水平在肝脏氨基酸代谢、分泌性蛋白质合成、尿素循环、糖脂代谢、排毒等生化过程中发挥着重要作用,其中尿素循环是体内氮排放的主要形式,但其分子调控机制还不清楚。因此本研究通过利用高通量测序手段比较分析了低蛋白日粮与正常蛋白日粮断奶仔猪肝脏相关蛋白质和mi RNA表达规律,
能量稳态(Energy homeostasis)是动物生长发育过程中能量摄入、储存和消耗的动态平衡过程,是维持动物生长发育的基础。提高动物能量正平衡不仅可以提高饲料利用率和生产效率,还可以降低饲养成本、减少排泄,因此能量稳态的调节对畜禽生产具有重要意义。能量稳态主要受神经系统和内分泌系统调节。下丘脑弓状核Ag RP神经元通过感受机体营养水平,在调节动物能量摄入的同时还可以改变机体代谢率,而胰岛素调
金黄色葡萄球菌是一种重要的人兽共患病原菌,尤其是甲氧西林耐药的金黄色葡萄球菌(MRSA),能在人和动物体内引起包括皮肤和软组织脓肿、获得性肺炎、菌血症、传染性心内膜炎以及中毒性休克综合症等在内的不同程度的感染。近年来,随着抗菌药在临床和畜禽养殖中的大量使用,MRSA菌株的耐药性日趋严重,而介导多重耐药(酰胺醇类、林可胺类、截短侧耳素类、恶唑烷酮类和链阳霉素A)的cfr基因在MRSA菌株中的广泛出现
杆菌肽是一类多肽类抗生素,主要用于治疗革兰氏阳性菌引发的局部感染。但由于其在畜牧养殖中可以促进动物生长,提高饲料转化率,并能抑制动物肠道中有害病原菌的繁殖,因此我国食品动物的养殖过程中,杆菌肽作为促生长剂和预防用药在我国畜禽养殖业中广泛使用。然而随着杆菌肽类药物在兽医临床的大量使用,其所引发的细菌耐药问题不容忽视。介导革兰氏阳性菌杆菌肽耐药的耐药基因主要为bcrR,bcrA,bcrB,bcrD等4
铜是大多数生物体的必需微量元素之一,其参与了机体多种生理生化活动。然而,铜过量会造成机体铜中毒,引起多个组织器官损伤。研究表明,肝脏是铜毒性作用的重要靶器官。国内外学者对高铜致肝毒性的机理进行了大量的研究,但这些研究多集中于凋亡机理的探究,而对高铜致肝脏毒性过程中自噬的功能、机理及其与凋亡之间调控关系的研究较少,特别是高铜诱导禽类自噬的研究更是少之又少。本研究通过建立动物模型和细胞培养模型,从体内
规律成簇间隔短回文重复(Clustered regularly interspaced short palindromic repeats,CRISPR)核酸酶基因编辑系统是新一代基因组编辑技术,具有操作简单和效率高等优点,广泛应用于植物基因功能研究和遗传改良。目前应用最广的CRISPR相关蛋白9(CRISPR-associated endonuclease 9,Cas9)基因编辑系统受到前间区序