【摘 要】
:
图像分类是大数据及智能信息时代下应运而生的产物,已经成功的应用到商品分类、美食分类、旅游景点分类、视频分类、图书分类等各种场景。目前,大部分图像中都包含多个感兴趣对象,且需要多个标签对这些对象进行标记,这类图像分类任务即多示例多标签学习(MIML)。大部分MIML深度学习架构更多关注如何在空间维度里改进网络,然而在实际应用此类方法并不能有效提高图像分类精度,其原因在于这些架构没有考虑到一个标签有多
论文部分内容阅读
图像分类是大数据及智能信息时代下应运而生的产物,已经成功的应用到商品分类、美食分类、旅游景点分类、视频分类、图书分类等各种场景。目前,大部分图像中都包含多个感兴趣对象,且需要多个标签对这些对象进行标记,这类图像分类任务即多示例多标签学习(MIML)。大部分MIML深度学习架构更多关注如何在空间维度里改进网络,然而在实际应用此类方法并不能有效提高图像分类精度,其原因在于这些架构没有考虑到一个标签有多种子概念(比如鼓这个标签包含了腰鼓,钟鼓等多个子概念),也忽略了激活函数近似线性区域对分类结果的影响。针对以上问题,本文改进了两个场景下的分类算法并设计了一个儿童电子书籍的分类系统。本文具体工作如下:(1)针对传统的MIML网络架构仅在空间维度上改善网络,没有充分利用通道间关系,本文将SENet融合到改进的Res152网络中,提高了特征提取的准确度,针对传统的MIML网络架构没有注意到一个标签有多种子概念,本文设计了一个3D子概念模型,改进了传统的网络架构,使每一个子概念都能被识别出来,从而提升了图像与标签匹配准确度。最后在COCO数据集上进行对比实验,验证了改进算法的可行性和有效性。(2)针对传统的网络结构忽略了激活函数的线性域误差且网络鲁棒性差的问题,本文提出了一种tan(?)i(·)模型,解决了激活函数的局部线性造成的分类误差。同时在传统网络模型中加入了 Attention机制,使网络可以有效抓取主要的特征信息,检验了其适应于各种网络,验证了该改进网络提升精度的有效性。(3)本文基于B/S架构设计了一个儿童电子书的分类系统,并将以上改进的算法集成到该系统的算法模块,构建了系统整体框架及软件逻辑体系,建立数据库表,最后完成开发测试及部署。
其他文献
媒体经过了五代发展,成为典型的数字网络媒体。数字网络媒体作为新时期新媒体的代表,其数字化控制管理水平更高。在现代化的数字媒体设计中,数字化的管理为媒体艺术的发展提供了更加丰富的表现形式。在新媒体传媒的作用下,中国传统文化及艺术通过多元化的新媒体传播渠道传播到了世界各国,也收获了更大范围的群体,以及他们对中国传统文化艺术的认可和欣赏。这其中包含了丰富多彩的中国元素。随着中国文化和艺术在国际上的地位越
脑瘫是指一组由产前、产时或产后非进行性脑损伤所致运动和姿势发育障碍的活动受限性疾病。作为一种非侵入无电离辐射的检测工具,磁共振成像(MRI)能够提供较高的软组织分辨率和丰富的影像信息,适合用于新生儿脑病筛查。但是目前我国大多数基层医院新生儿头颅MRI检查仅能够提供常规的MRI模式。面对挑战,现如今基于深度学习的新生儿大脑图像分割算法存在两点不足:一是过于依赖数据集;二是加深网络层数的同时增加了模型
近年来,随着对神经网络的不断探索及移动手机硬件的更新换代,越来越多的研究聚焦于如何设计有效的模型,支撑起移动终端的任务推理。图片分类是众多研究中的经典任务,可用于以图搜图、人脸识别、医疗影像等诸多领域,在现实中有重大实用意义。而在移动端上进行图片分类主要面临如下两个问题:神经网络模型往往是参数量大且计算密集型的,存储和计算资源的开销给移动端带来了很大的负担;而移动端和云端结合的处理方式虽然高效,但
秦始皇兵马俑挖掘出土时大多已破碎残损,大量文物碎片拼接修复复杂,其拼接复原便成为复杂的数学问题,高性能模型智能处理方法研究成为推动该问题解决的关键。由于直觉模糊集同时考虑了隶属度、非隶属度与犹豫度这三方面信息,更加适合处理多碎片拼接过程中“匹配”程度上的不确定性,为受损俑体自身形状模糊表示、特征缺失的模型表示、受损俑体自身特征模糊不易提取表示问题提供技术支撑,实现精准建模,支持在模型特征空间上的系
生物系统蕴含着各种各样复杂的结构与功能,例如其内部固有的异质性和催化转化等。为了进一步阐明这些复杂系统中的各种生理机制,推进单分子生物技术的创新发展已刻不容缓。与传统的集成平均法相反,单分子纳米通道技术可以在高时空分辨率下追踪单个生物分子的动态行为。更重要的是,该方法具有同时获取多个分子指纹信息的独特功能,因而适用于复杂生物流体和微小差异组分的高通量多重分析。本论文以此为出发点,将嵌入仿生分子受体
糖肽质谱数据的无标记定量算法是生物信息学中重要的研究内容之一。随着计算机技术的快速发展,使得面向糖肽质谱数据的无标记定量算法研究成为可能。为了完成计算机辅助的糖肽质谱数据无标记定量,本文解决的问题及主要工作如下:(1)针对峰簇混叠导致的峰簇分离提取易出错问题,本文结合离子同位素分布规则,提出了一种基于三维信息的多电荷混叠峰簇分离提取算法(3D-based Multiple-charges Over
软件缺陷是软件或者程序中存在的某种破坏程序正常运行能力的问题、错误,其存在会给软件带来安全隐患。随着软件规模变大,其结构越来越复杂,如何在软件动态变更过程中尽早发现和修复软件缺陷,已成为各大软件公司关注的热点。软件缺陷预测(Software Defect Prediction,SDP)旨在通过某种手段检测当前项目中哪些模块可能出现缺陷。传统的软件缺陷代码检测采取全量检测方式,时效性较低,并且在缺陷
知识追踪任务是根据学生历史学习行为来追踪学生的知识状态,以预测学生在未来交互中会如何表现。通过对学生知识状态建模,可以为学生提供个性化的学习指导,帮助学生摆脱题海战术,同时也有助于教师更好地了解学生的学习水平,并相应地调整教学方案。本文以学生答题序列数据为研究对象,主要针对深度知识追踪开展如下相关研究工作:(1)针对现有的深度知识追踪方法没有全面考虑学生答题行为特征对学生学习过程的影响这一问题,提
近年来,互联网汽车共享服务的迅速发展满足了人们对于舒适、便捷的交通方式的需求,但大量的网约车加剧了城市的道路拥堵、环境污染和资源消耗。网约车拼车服务使一辆车能够同时服务多位出行路线相似的乘客,减少非必要车辆出行,缓解交通压力。但是,现有的动态拼车匹配算法忽视了潜在的乘客出行需求,导致车辆的拼车载客率较低。因此,研究潜在乘客的出行规律并提出基于出行需求预测的动态拼车匹配算法具有较大的意义。此外,在乘
气敏传感器是传感器领域中的重要组成部分,对推动智能感知监测、实现万物互联具有极其重要的作用。虽然半导体气敏传感器已广泛应用于各个领域,但目前依然存在诸多问题以待解决,如工作温度较高、气体选择性较差,低响应度等,故而开发工作在室温环境高选择性和高响应度的气敏传感器尤为重要。本论文从气敏传感材料研制的角度出发,采用两步微波水热法合成了可在室温环境对NO2气体具有高度选择性的Bi2S3/MoS2复合材料